Articles de revues sur le sujet « Microbunch »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 49 meilleurs articles de revues pour votre recherche sur le sujet « Microbunch ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Adli, Erik, and Patric Muggli. "Proton-Beam-Driven Plasma Acceleration." Reviews of Accelerator Science and Technology 09 (January 2016): 85–104. http://dx.doi.org/10.1142/s1793626816300048.
Texte intégralSchächter, Levi, and Wayne D. Kimura. "Quasi-monoenergetic ultrashort microbunch electron source." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 875 (December 2017): 80–86. http://dx.doi.org/10.1016/j.nima.2017.08.041.
Texte intégralShields, W., R. Bartolini, G. Boorman, et al. "Microbunch Instability Observations from a THz Detector at Diamond Light Source." Journal of Physics: Conference Series 357 (May 3, 2012): 012037. http://dx.doi.org/10.1088/1742-6596/357/1/012037.
Texte intégralHuang, Z., and T. Shaftan. "Impact of beam energy modulation on rf zero-phasing microbunch measurements." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, no. 1-2 (2004): 345–49. http://dx.doi.org/10.1016/j.nima.2004.04.065.
Texte intégralCarlsten, Bruce E., Kip A. Bishofberger, Leanne D. Duffy, John W. Lewellen, Quinn R. Marksteiner, and Nikolai A. Yampolsky. "Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability." IEEE Transactions on Nuclear Science 63, no. 2 (2016): 921–29. http://dx.doi.org/10.1109/tns.2015.2498619.
Texte intégralPetzoldt, J., K. E. Roemer, W. Enghardt, et al. "Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility." Physics in Medicine and Biology 61, no. 6 (2016): 2432–56. http://dx.doi.org/10.1088/0031-9155/61/6/2432.
Texte intégralKaufmann, Pierre, and Jean-Pierre Raulin. "Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves?" Physics of Plasmas 13, no. 7 (2006): 070701. http://dx.doi.org/10.1063/1.2244526.
Texte intégralCarlsten, Bruce E., Petr M. Anisimov, Cris W. Barnes, Quinn R. Marksteiner, River R. Robles, and Nikolai Yampolsky. "High-Brightness Beam Technology Development for a Future Dynamic Mesoscale Materials Science Capability." Instruments 3, no. 4 (2019): 52. http://dx.doi.org/10.3390/instruments3040052.
Texte intégralSeo, Yoonho, and Wonhyung Lee. "Stimulated Superradiance Emitted from Periodic Microbunches of Electrons." Japanese Journal of Applied Physics 49, no. 11 (2010): 116402. http://dx.doi.org/10.1143/jjap.49.116402.
Texte intégralLumpkin, A. H. "Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics." International Journal of Modern Physics A 34, no. 34 (2019): 1943013. http://dx.doi.org/10.1142/s0217751x19430139.
Texte intégralAginian, M. A., K. A. Ispirian, M. K. Ispiryan, and M. I. Ivanyan. "Coherent X-ray Cherenkov radiation produced by microbunched beams." Journal of Physics: Conference Series 517 (May 30, 2014): 012040. http://dx.doi.org/10.1088/1742-6596/517/1/012040.
Texte intégralHemsing, E., and J. B. Rosenzweig. "Coherent transition radiation from a helically microbunched electron beam." Journal of Applied Physics 105, no. 9 (2009): 093101. http://dx.doi.org/10.1063/1.3121207.
Texte intégralSchaap, B. H., T. D. C. de Vos, P. W. Smorenburg, and O. J. Luiten. "Photon yield of superradiant inverse Compton scattering from microbunched electrons." New Journal of Physics 24, no. 3 (2022): 033040. http://dx.doi.org/10.1088/1367-2630/ac59eb.
Texte intégralHe, Zhigang, Yuanfang Xu, Weiwei Li, and Qika Jia. "Generation of quasiequally spaced ultrashort microbunches in a photocathode rf gun." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 775 (March 2015): 77–83. http://dx.doi.org/10.1016/j.nima.2014.12.019.
Texte intégralZhang, Haoran, Wenxing Wang, Shimin Jiang, et al. "Coherent terahertz radiation with orbital angular momentum by helically microbunched electron beam." AIP Advances 11, no. 5 (2021): 055115. http://dx.doi.org/10.1063/5.0052083.
Texte intégralGevorgian, L. A., K. A. Ispirian, and A. H. Shamamian. "Crystalline undulator radiation of microbunched beams taking into account the medium polarization." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 309 (August 2013): 63–66. http://dx.doi.org/10.1016/j.nimb.2013.02.034.
Texte intégralParodi, K., P. Crespo, H. Eickhoff, et al. "Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545, no. 1-2 (2005): 446–58. http://dx.doi.org/10.1016/j.nima.2005.02.002.
Texte intégralIspirian, K. A. "Coherent X-ray radiation produced by microbunched beams in amorphous and crystalline radiators." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 309 (August 2013): 4–9. http://dx.doi.org/10.1016/j.nimb.2013.01.072.
Texte intégralZhang, Huibo, Ivan Konoplev, and George Doucas. "A tunable source of coherent terahertz radiation driven by the microbunched electron beam." Journal of Physics D: Applied Physics 53, no. 10 (2019): 105501. http://dx.doi.org/10.1088/1361-6463/ab5d69.
Texte intégralKulipanov, G. N., A. S. Sokolov, and N. A. Vinokurov. "Coherent undulator radiation of an electron beam, microbunched for the FEL power outcoupling." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 375, no. 1-3 (1996): 576–79. http://dx.doi.org/10.1016/0168-9002(96)00038-1.
Texte intégralGeloni, Gianluca, Vitali Kocharyan, and Evgeni Saldin. "On radiation emission from a microbunched beam with wavefront tilt and its experimental observation." Optics Communications 410 (March 2018): 180–86. http://dx.doi.org/10.1016/j.optcom.2017.10.010.
Texte intégralLumpkin, A. H., M. Erdmann, J. W. Lewellen, et al. "First observations of COTR due to a microbunched beam in the VUV at 157nm." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, no. 1-2 (2004): 194–98. http://dx.doi.org/10.1016/j.nima.2004.04.045.
Texte intégralTsai, Cheng-Ying, and Weilun Qin. "Semi-analytical analysis of high-brightness microbunched beam dynamics with collective and intrabeam scattering effects." Physics of Plasmas 28, no. 1 (2021): 013112. http://dx.doi.org/10.1063/5.0038246.
Texte intégralStöckli, Martin P. "Production of microbunched beams of very highly charged ions with an electron beam ion source." Review of Scientific Instruments 69, no. 2 (1998): 649–51. http://dx.doi.org/10.1063/1.1148463.
Texte intégralKimura, W. D., N. E. Andreev, M. Babzien, et al. "Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (2006): 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.
Texte intégralAginian, M. A., K. A. Ispirian, and M. K. Ispiryan. "Coherent X-ray diffraction radiation produced by microbunched beams passing close to the edge of a slab." Journal of Contemporary Physics (Armenian Academy of Sciences) 47, no. 2 (2012): 53–57. http://dx.doi.org/10.3103/s1068337212020028.
Texte intégralXu, Haoran, Petr M. Anisimov, Bruce E. Carlsten, Leanne D. Duffy, Quinn R. Marksteiner, and River R. Robles. "X-ray Free Electron Laser Accelerator Lattice Design Using Laser-Assisted Bunch Compression." Applied Sciences 13, no. 4 (2023): 2285. http://dx.doi.org/10.3390/app13042285.
Texte intégralAppel, Sabrina, and Oliver Boine-Frankenheim. "Microbunch dynamics and multistream instability in a heavy-ion synchrotron." Physical Review Special Topics - Accelerators and Beams 15, no. 5 (2012). http://dx.doi.org/10.1103/physrevstab.15.054201.
Texte intégralMacArthur, James P., Alberto A. Lutman, Jacek Krzywinski, and Zhirong Huang. "Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam." Physical Review X 8, no. 4 (2018). http://dx.doi.org/10.1103/physrevx.8.041036.
Texte intégralCousineau, S., V. Danilov, J. Holmes, and R. Macek. "Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring." Physical Review Special Topics - Accelerators and Beams 7, no. 9 (2004). http://dx.doi.org/10.1103/physrevstab.7.094201.
Texte intégralRicci, Kenneth N., and Todd I. Smith. "Longitudinal electron beam and free electron laser microbunch measurements using off-phase rf acceleration." Physical Review Special Topics - Accelerators and Beams 3, no. 3 (2000). http://dx.doi.org/10.1103/physrevstab.3.032801.
Texte intégralShevelev, M., A. Aryshev, N. Terunuma, and J. Urakawa. "Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer." Physical Review Accelerators and Beams 20, no. 10 (2017). http://dx.doi.org/10.1103/physrevaccelbeams.20.103401.
Texte intégralLi, Y., W. Decking, B. Faatz, and J. Pflueger. "Microbunch preserving bending system for a helical radiator at the European X-ray Free Electron Laser." Physical Review Special Topics - Accelerators and Beams 13, no. 8 (2010). http://dx.doi.org/10.1103/physrevstab.13.080705.
Texte intégralTsai, Cheng-Ying, Alexander Wu Chao, Yi Jiao, Hao-Wen Luo, Make Ying, and Qinghong Zhou. "Coherent-radiation-induced longitudinal single-pass beam breakup instability of a steady-state microbunch train in an undulator." Physical Review Accelerators and Beams 24, no. 11 (2021). http://dx.doi.org/10.1103/physrevaccelbeams.24.114401.
Texte intégralStupakov, G., and P. Baxevanis. "Microbunched electron cooling with amplification cascades." Physical Review Accelerators and Beams 22, no. 3 (2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.034401.
Texte intégralBaxevanis, P., and G. Stupakov. "Transverse dynamics considerations for microbunched electron cooling." Physical Review Accelerators and Beams 22, no. 8 (2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.081003.
Texte intégralBaxevanis, P., and G. Stupakov. "Hadron beam evolution in microbunched electron cooling." Physical Review Accelerators and Beams 23, no. 11 (2020). http://dx.doi.org/10.1103/physrevaccelbeams.23.111001.
Texte intégralRatner, D. "Microbunched Electron Cooling for High-Energy Hadron Beams." Physical Review Letters 111, no. 8 (2013). http://dx.doi.org/10.1103/physrevlett.111.084802.
Texte intégralStupakov, G. "Cooling rate for microbunched electron cooling without amplification." Physical Review Accelerators and Beams 21, no. 11 (2018). http://dx.doi.org/10.1103/physrevaccelbeams.21.114402.
Texte intégralXiang, Dao, Erik Hemsing, Michael Dunning, Carsten Hast, and Tor Raubenheimer. "Femtosecond Visualization of Laser-Induced Optical Relativistic Electron Microbunches." Physical Review Letters 113, no. 18 (2014). http://dx.doi.org/10.1103/physrevlett.113.184802.
Texte intégralMuggli, P., V. Yakimenko, M. Babzien, E. Kallos, and K. P. Kusche. "Generation of Trains of Electron Microbunches with Adjustable Subpicosecond Spacing." Physical Review Letters 101, no. 5 (2008). http://dx.doi.org/10.1103/physrevlett.101.054801.
Texte intégralHacker, K., R. Molo, S. Khan, et al. "Measurements and simulations of seeded electron microbunches with collective effects." Physical Review Special Topics - Accelerators and Beams 18, no. 9 (2015). http://dx.doi.org/10.1103/physrevstab.18.090704.
Texte intégralIspirian, K. A., and M. Ispiryan. "Coherent x-ray transition and diffraction radiation of microbunched beams." Physical Review Special Topics - Accelerators and Beams 16, no. 2 (2013). http://dx.doi.org/10.1103/physrevstab.16.020702.
Texte intégralSchönenberger, Norbert, Anna Mittelbach, Peyman Yousefi, Joshua McNeur, Uwe Niedermayer, and Peter Hommelhoff. "Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration." Physical Review Letters 123, no. 26 (2019). http://dx.doi.org/10.1103/physrevlett.123.264803.
Texte intégralZhou, F., D. B. Cline, and W. D. Kimura. "Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment." Physical Review Special Topics - Accelerators and Beams 6, no. 5 (2003). http://dx.doi.org/10.1103/physrevstab.6.054201.
Texte intégralSedaghat, M., S. Barzegar, and A. R. Niknam. "Quasi-phase-matched laser wakefield acceleration of electrons in an axially density-modulated plasma channel." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-94751-y.
Texte intégralSchaap, B. H., P. W. Smorenburg, and O. J. Luiten. "Isolated attosecond X-ray pulses from superradiant thomson scattering by a relativistic chirped electron mirror." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-24288-1.
Texte intégralMarinelli, A., M. Dunning, S. Weathersby, et al. "Single-Shot Coherent Diffraction Imaging of Microbunched Relativistic Electron Beams for Free-Electron Laser Applications." Physical Review Letters 110, no. 9 (2013). http://dx.doi.org/10.1103/physrevlett.110.094802.
Texte intégralSharma, Ashutosh, and Christos Kamperidis. "High energy proton micro-bunches from a laser plasma accelerator." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-50348-0.
Texte intégral