Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Microbunch.

Articles de revues sur le sujet « Microbunch »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 49 meilleurs articles de revues pour votre recherche sur le sujet « Microbunch ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Adli, Erik, and Patric Muggli. "Proton-Beam-Driven Plasma Acceleration." Reviews of Accelerator Science and Technology 09 (January 2016): 85–104. http://dx.doi.org/10.1142/s1793626816300048.

Texte intégral
Résumé :
We describe the main ideas, promises and challenges related to proton-driven plasma wakefield acceleration. Existing high-energy proton beams have the potential to accelerate electron beams to the TeV scale in a single plasma stage. In order to drive a wake effectively the available beams must be either highly compressed or microbunched. The self-modulation instability has been suggested as a way to microbunch the proton beams. The AWAKE project at CERN is currently the only planned proton-driven plasma acceleration experiment. A self-modulated CERN SPS beam will be used to drive a plasma wake
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schächter, Levi, and Wayne D. Kimura. "Quasi-monoenergetic ultrashort microbunch electron source." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 875 (December 2017): 80–86. http://dx.doi.org/10.1016/j.nima.2017.08.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shields, W., R. Bartolini, G. Boorman, et al. "Microbunch Instability Observations from a THz Detector at Diamond Light Source." Journal of Physics: Conference Series 357 (May 3, 2012): 012037. http://dx.doi.org/10.1088/1742-6596/357/1/012037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Huang, Z., and T. Shaftan. "Impact of beam energy modulation on rf zero-phasing microbunch measurements." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, no. 1-2 (2004): 345–49. http://dx.doi.org/10.1016/j.nima.2004.04.065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Carlsten, Bruce E., Kip A. Bishofberger, Leanne D. Duffy, John W. Lewellen, Quinn R. Marksteiner, and Nikolai A. Yampolsky. "Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability." IEEE Transactions on Nuclear Science 63, no. 2 (2016): 921–29. http://dx.doi.org/10.1109/tns.2015.2498619.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Petzoldt, J., K. E. Roemer, W. Enghardt, et al. "Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility." Physics in Medicine and Biology 61, no. 6 (2016): 2432–56. http://dx.doi.org/10.1088/0031-9155/61/6/2432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kaufmann, Pierre, and Jean-Pierre Raulin. "Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves?" Physics of Plasmas 13, no. 7 (2006): 070701. http://dx.doi.org/10.1063/1.2244526.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Carlsten, Bruce E., Petr M. Anisimov, Cris W. Barnes, Quinn R. Marksteiner, River R. Robles, and Nikolai Yampolsky. "High-Brightness Beam Technology Development for a Future Dynamic Mesoscale Materials Science Capability." Instruments 3, no. 4 (2019): 52. http://dx.doi.org/10.3390/instruments3040052.

Texte intégral
Résumé :
A future capability in dynamic mesoscale materials science is needed to study the limitations of materials under irreversible and extreme conditions, where these limitations are caused by nonuniformities and defects in the mesoscale. This capability gap could potentially be closed with an X-ray free-electron laser (XFEL), producing 5 × 1010 photons with an energy of 42 keV, known as the Matter–Radiation Interactions in Extremes (MaRIE) XFEL. Over the last few years, researchers at the Los Alamos National Laboratory have developed a preconceptual design for a MaRIE-class XFEL based on existing
Styles APA, Harvard, Vancouver, ISO, etc.
9

Seo, Yoonho, and Wonhyung Lee. "Stimulated Superradiance Emitted from Periodic Microbunches of Electrons." Japanese Journal of Applied Physics 49, no. 11 (2010): 116402. http://dx.doi.org/10.1143/jjap.49.116402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lumpkin, A. H. "Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics." International Journal of Modern Physics A 34, no. 34 (2019): 1943013. http://dx.doi.org/10.1142/s0217751x19430139.

Texte intégral
Résumé :
Application of coherent optical transition radiation (COTR) diagnostics to compact accelerators has been demonstrated for the laser-driven plasma accelerator case recently. It is proposed that such diagnostics for beam size, beam divergence, microbunching fraction, spectral content, and bunch length would be useful before and after any subsequent acceleration in crystals or nanostructures. In addition, there are indications that under some scenarios a microbunched beam could resonantly excite wake fields in nanostructures that might lead to an increased acceleration gradient.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Aginian, M. A., K. A. Ispirian, M. K. Ispiryan, and M. I. Ivanyan. "Coherent X-ray Cherenkov radiation produced by microbunched beams." Journal of Physics: Conference Series 517 (May 30, 2014): 012040. http://dx.doi.org/10.1088/1742-6596/517/1/012040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hemsing, E., and J. B. Rosenzweig. "Coherent transition radiation from a helically microbunched electron beam." Journal of Applied Physics 105, no. 9 (2009): 093101. http://dx.doi.org/10.1063/1.3121207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Schaap, B. H., T. D. C. de Vos, P. W. Smorenburg, and O. J. Luiten. "Photon yield of superradiant inverse Compton scattering from microbunched electrons." New Journal of Physics 24, no. 3 (2022): 033040. http://dx.doi.org/10.1088/1367-2630/ac59eb.

Texte intégral
Résumé :
Abstract Compact x-ray sources offering high-brightness radiation for advanced imaging applications are highly desired. We investigate, analytically and numerically, the photon yield of superradiant inverse Compton scattering from microbunched electrons in the linear Thomson regime, using a classical electrodynamics approach. We show that for low electron beam energy, which is generic to inverse Compton sources, the single electron radiation distribution does not match well to collective amplification pattern induced by a density modulated electron beam. Consequently, for head-on scattering fr
Styles APA, Harvard, Vancouver, ISO, etc.
14

He, Zhigang, Yuanfang Xu, Weiwei Li, and Qika Jia. "Generation of quasiequally spaced ultrashort microbunches in a photocathode rf gun." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 775 (March 2015): 77–83. http://dx.doi.org/10.1016/j.nima.2014.12.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Haoran, Wenxing Wang, Shimin Jiang, et al. "Coherent terahertz radiation with orbital angular momentum by helically microbunched electron beam." AIP Advances 11, no. 5 (2021): 055115. http://dx.doi.org/10.1063/5.0052083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gevorgian, L. A., K. A. Ispirian, and A. H. Shamamian. "Crystalline undulator radiation of microbunched beams taking into account the medium polarization." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 309 (August 2013): 63–66. http://dx.doi.org/10.1016/j.nimb.2013.02.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Parodi, K., P. Crespo, H. Eickhoff, et al. "Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545, no. 1-2 (2005): 446–58. http://dx.doi.org/10.1016/j.nima.2005.02.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ispirian, K. A. "Coherent X-ray radiation produced by microbunched beams in amorphous and crystalline radiators." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 309 (August 2013): 4–9. http://dx.doi.org/10.1016/j.nimb.2013.01.072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Huibo, Ivan Konoplev, and George Doucas. "A tunable source of coherent terahertz radiation driven by the microbunched electron beam." Journal of Physics D: Applied Physics 53, no. 10 (2019): 105501. http://dx.doi.org/10.1088/1361-6463/ab5d69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kulipanov, G. N., A. S. Sokolov, and N. A. Vinokurov. "Coherent undulator radiation of an electron beam, microbunched for the FEL power outcoupling." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 375, no. 1-3 (1996): 576–79. http://dx.doi.org/10.1016/0168-9002(96)00038-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Geloni, Gianluca, Vitali Kocharyan, and Evgeni Saldin. "On radiation emission from a microbunched beam with wavefront tilt and its experimental observation." Optics Communications 410 (March 2018): 180–86. http://dx.doi.org/10.1016/j.optcom.2017.10.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lumpkin, A. H., M. Erdmann, J. W. Lewellen, et al. "First observations of COTR due to a microbunched beam in the VUV at 157nm." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, no. 1-2 (2004): 194–98. http://dx.doi.org/10.1016/j.nima.2004.04.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tsai, Cheng-Ying, and Weilun Qin. "Semi-analytical analysis of high-brightness microbunched beam dynamics with collective and intrabeam scattering effects." Physics of Plasmas 28, no. 1 (2021): 013112. http://dx.doi.org/10.1063/5.0038246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Stöckli, Martin P. "Production of microbunched beams of very highly charged ions with an electron beam ion source." Review of Scientific Instruments 69, no. 2 (1998): 649–51. http://dx.doi.org/10.1063/1.1148463.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kimura, W. D., N. E. Andreev, M. Babzien, et al. "Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (2006): 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.

Texte intégral
Résumé :
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two
Styles APA, Harvard, Vancouver, ISO, etc.
26

Aginian, M. A., K. A. Ispirian, and M. K. Ispiryan. "Coherent X-ray diffraction radiation produced by microbunched beams passing close to the edge of a slab." Journal of Contemporary Physics (Armenian Academy of Sciences) 47, no. 2 (2012): 53–57. http://dx.doi.org/10.3103/s1068337212020028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Xu, Haoran, Petr M. Anisimov, Bruce E. Carlsten, Leanne D. Duffy, Quinn R. Marksteiner, and River R. Robles. "X-ray Free Electron Laser Accelerator Lattice Design Using Laser-Assisted Bunch Compression." Applied Sciences 13, no. 4 (2023): 2285. http://dx.doi.org/10.3390/app13042285.

Texte intégral
Résumé :
We report the start-to-end modeling of our accelerator lattice design employing a laser-assisted bunch compression (LABC) scheme in an X-ray free electron laser (XFEL), using the proposed Matter-Radiation Interactions in Extremes (MaRIE) XFEL parameters. The accelerator lattice utilized a two-stage bunch compression scheme, with the first bunch compressor performing a conventional bulk compression enhancing the beam current from 20 A to 500 A, at 750 MeV. The second bunch compression was achieved by modulating the beam immediately downstream of the first bunch compressor by a laser with 1-μm w
Styles APA, Harvard, Vancouver, ISO, etc.
28

Appel, Sabrina, and Oliver Boine-Frankenheim. "Microbunch dynamics and multistream instability in a heavy-ion synchrotron." Physical Review Special Topics - Accelerators and Beams 15, no. 5 (2012). http://dx.doi.org/10.1103/physrevstab.15.054201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

MacArthur, James P., Alberto A. Lutman, Jacek Krzywinski, and Zhirong Huang. "Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam." Physical Review X 8, no. 4 (2018). http://dx.doi.org/10.1103/physrevx.8.041036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cousineau, S., V. Danilov, J. Holmes, and R. Macek. "Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring." Physical Review Special Topics - Accelerators and Beams 7, no. 9 (2004). http://dx.doi.org/10.1103/physrevstab.7.094201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ricci, Kenneth N., and Todd I. Smith. "Longitudinal electron beam and free electron laser microbunch measurements using off-phase rf acceleration." Physical Review Special Topics - Accelerators and Beams 3, no. 3 (2000). http://dx.doi.org/10.1103/physrevstab.3.032801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shevelev, M., A. Aryshev, N. Terunuma, and J. Urakawa. "Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer." Physical Review Accelerators and Beams 20, no. 10 (2017). http://dx.doi.org/10.1103/physrevaccelbeams.20.103401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Y., W. Decking, B. Faatz, and J. Pflueger. "Microbunch preserving bending system for a helical radiator at the European X-ray Free Electron Laser." Physical Review Special Topics - Accelerators and Beams 13, no. 8 (2010). http://dx.doi.org/10.1103/physrevstab.13.080705.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tsai, Cheng-Ying, Alexander Wu Chao, Yi Jiao, Hao-Wen Luo, Make Ying, and Qinghong Zhou. "Coherent-radiation-induced longitudinal single-pass beam breakup instability of a steady-state microbunch train in an undulator." Physical Review Accelerators and Beams 24, no. 11 (2021). http://dx.doi.org/10.1103/physrevaccelbeams.24.114401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Stupakov, G., and P. Baxevanis. "Microbunched electron cooling with amplification cascades." Physical Review Accelerators and Beams 22, no. 3 (2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.034401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Baxevanis, P., and G. Stupakov. "Transverse dynamics considerations for microbunched electron cooling." Physical Review Accelerators and Beams 22, no. 8 (2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.081003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Baxevanis, P., and G. Stupakov. "Hadron beam evolution in microbunched electron cooling." Physical Review Accelerators and Beams 23, no. 11 (2020). http://dx.doi.org/10.1103/physrevaccelbeams.23.111001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ratner, D. "Microbunched Electron Cooling for High-Energy Hadron Beams." Physical Review Letters 111, no. 8 (2013). http://dx.doi.org/10.1103/physrevlett.111.084802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Stupakov, G. "Cooling rate for microbunched electron cooling without amplification." Physical Review Accelerators and Beams 21, no. 11 (2018). http://dx.doi.org/10.1103/physrevaccelbeams.21.114402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Xiang, Dao, Erik Hemsing, Michael Dunning, Carsten Hast, and Tor Raubenheimer. "Femtosecond Visualization of Laser-Induced Optical Relativistic Electron Microbunches." Physical Review Letters 113, no. 18 (2014). http://dx.doi.org/10.1103/physrevlett.113.184802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Muggli, P., V. Yakimenko, M. Babzien, E. Kallos, and K. P. Kusche. "Generation of Trains of Electron Microbunches with Adjustable Subpicosecond Spacing." Physical Review Letters 101, no. 5 (2008). http://dx.doi.org/10.1103/physrevlett.101.054801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hacker, K., R. Molo, S. Khan, et al. "Measurements and simulations of seeded electron microbunches with collective effects." Physical Review Special Topics - Accelerators and Beams 18, no. 9 (2015). http://dx.doi.org/10.1103/physrevstab.18.090704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ispirian, K. A., and M. Ispiryan. "Coherent x-ray transition and diffraction radiation of microbunched beams." Physical Review Special Topics - Accelerators and Beams 16, no. 2 (2013). http://dx.doi.org/10.1103/physrevstab.16.020702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Schönenberger, Norbert, Anna Mittelbach, Peyman Yousefi, Joshua McNeur, Uwe Niedermayer, and Peter Hommelhoff. "Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration." Physical Review Letters 123, no. 26 (2019). http://dx.doi.org/10.1103/physrevlett.123.264803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhou, F., D. B. Cline, and W. D. Kimura. "Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment." Physical Review Special Topics - Accelerators and Beams 6, no. 5 (2003). http://dx.doi.org/10.1103/physrevstab.6.054201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sedaghat, M., S. Barzegar, and A. R. Niknam. "Quasi-phase-matched laser wakefield acceleration of electrons in an axially density-modulated plasma channel." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-94751-y.

Texte intégral
Résumé :
AbstractQuasi-phase matching in corrugated plasma channels has been proposed as a way to overcome the dephasing limitation in laser wakefield accelerators. In this study, the phase-lock dynamics of a relatively long electron bunch injected in an axially-modulated plasma waveguide is investigated by performing particle simulations. The main objective here is to obtain a better understanding of how the transverse and longitudinal components of the wakefield as well as the initial properties of the beam affect its evolution and qualities. The results indicate that the modulation of the electron b
Styles APA, Harvard, Vancouver, ISO, etc.
47

Schaap, B. H., P. W. Smorenburg, and O. J. Luiten. "Isolated attosecond X-ray pulses from superradiant thomson scattering by a relativistic chirped electron mirror." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-24288-1.

Texte intégral
Résumé :
AbstractTime-resolved investigation of electron dynamics relies on the generation of isolated attosecond pulses in the (soft) X-ray regime. Thomson scattering is a source of high energy radiation of increasing prevalence in modern labs, complementing large scale facilities like undulators and X-ray free electron lasers. We propose a scheme to generate isolated attosecond X-ray pulses based on Thomson scattering by colliding microbunched electrons on a chirped laser pulse. The electrons collectively act as a relativistic chirped mirror, which superradiantly reflects the laser pulse into a singl
Styles APA, Harvard, Vancouver, ISO, etc.
48

Marinelli, A., M. Dunning, S. Weathersby, et al. "Single-Shot Coherent Diffraction Imaging of Microbunched Relativistic Electron Beams for Free-Electron Laser Applications." Physical Review Letters 110, no. 9 (2013). http://dx.doi.org/10.1103/physrevlett.110.094802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Sharma, Ashutosh, and Christos Kamperidis. "High energy proton micro-bunches from a laser plasma accelerator." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-50348-0.

Texte intégral
Résumé :
Abstract Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic particle sources, particularly towards the viability of their usage in a breadth of applications, such as high energy physics and medical applications. Here, we identify a new ion acceleration mechanism and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!