Sommaire
Littérature scientifique sur le sujet « Microcrystal arthritis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Microcrystal arthritis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Microcrystal arthritis"
Zamudio-Cuevas, Yessica, Javier Fernández-Torres, Gabriela Angélica Martínez-Nava, Karina Martínez-Flores et Alberto López-Reyes. « Emergent nanotherapies in microcrystal-induced arthritis ». International Immunopharmacology 61 (août 2018) : 197–203. http://dx.doi.org/10.1016/j.intimp.2018.06.007.
Texte intégralPatrón-Ordóñez, Gino, et María I. Anticona-Sayán. « Charcot neuroarthropathy : Differential diagnosis of monoarthritis of the knee in patients with type 2 diabetes mellitus ». Revista de la Facultad de Medicina Humana 22, no 4 (12 octobre 2022) : 906–11. http://dx.doi.org/10.25176/rfmh.v22i4.5107.
Texte intégralBrune, Kay, Käthy Bucher et Dieter Walz. « The avian microcrystal arthritis II. Central versus peripheral effects of sodium salicylate, acetaminophen and colchicine ». Agents and Actions 43, no 3-4 (décembre 1994) : 211–17. http://dx.doi.org/10.1007/bf01986691.
Texte intégralFerreyra, Marine, Guillaume Coiffier, Jean-David Albert, Claire David, Aleth Perdriger et Pascal Guggenbuhl. « Combining cytology and microcrystal detection in nonpurulent joint fluid benefits the diagnosis of septic arthritis ». Joint Bone Spine 84, no 1 (janvier 2017) : 65–70. http://dx.doi.org/10.1016/j.jbspin.2016.04.002.
Texte intégralEliseev, M. S., et A. M. Novikova. « Clinical discussion : gout therapy in a comorbid patient ». Meditsinskiy sovet = Medical Council, no 11 (8 août 2020) : 154–62. http://dx.doi.org/10.21518/2079-701x-2020-11-154-162.
Texte intégralPeral, M. L., I. Calabuig, A. Martín-Carratalá, M. Andrés et E. Pascual. « THU0406 IDENTIFICATION OF INTRACELLULAR VACUOLES IN SYNOVIAL FLUID WITH CALCIUM PYROPHOSPHATE AND MONOSODIUM URATE CRYSTALS ». Annals of the Rheumatic Diseases 79, Suppl 1 (juin 2020) : 440.1–441. http://dx.doi.org/10.1136/annrheumdis-2020-eular.3851.
Texte intégralDuse, Adina Octavia, Delia Berceanu Vaduva, Mirela Nicolov, Cristina Trandafirescu, Marcel Berceanu Vaduva, Mariana Cevei et Alina Heghes. « Biostatistical Analysis and Possible Forecasting of Relationship Between Uric Acid and Specific Laboratory Tests in Cases of Gouty Arthritis ». Revista de Chimie 68, no 6 (15 juillet 2017) : 1234–41. http://dx.doi.org/10.37358/rc.17.6.5648.
Texte intégralPouliot, Marc, Michael J. James, Shaun R. McColl, Paul H. Naccache et Leslie G. Cleland. « Monosodium Urate Microcrystals Induce Cyclooxygenase-2 in Human Monocytes ». Blood 91, no 5 (1 mars 1998) : 1769–76. http://dx.doi.org/10.1182/blood.v91.5.1769.
Texte intégralPouliot, Marc, Michael J. James, Shaun R. McColl, Paul H. Naccache et Leslie G. Cleland. « Monosodium Urate Microcrystals Induce Cyclooxygenase-2 in Human Monocytes ». Blood 91, no 5 (1 mars 1998) : 1769–76. http://dx.doi.org/10.1182/blood.v91.5.1769.1769_1769_1776.
Texte intégralChemes, V., O. Abrahamovych, U. Abrahamovych, R. Ivanochko et L. Kobak. « Calcium-phosphorus metabolism and markers of its regulation in patients with rheumatoid arthritis with violation of bone mineral density : character and diagnostic value ». Lviv clinical bulletin 3-4, no 39-40 (2 janvier 2023) : 76–82. http://dx.doi.org/10.25040/lkv2022.03-04.076.
Texte intégralThèses sur le sujet "Microcrystal arthritis"
Alì, Alessandra. « Studies on molecular aspects of inflammation : Involvement of purinergic P2X7R in collagen production in systemic sclerosis and chronic heart failure Neutrophil Extracellular Traps release in synovial fluid from microcrystal and non-microcrystal arthritis ». Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1071012.
Texte intégralBackground: A novel neutrophils defense mechanism discovered in recent years consists in the extracellular release of network consisting of DNA associated with histones and neutrophils granule enzymes in the form of Neutrophil Extracellular Traps (NETs). Although NETs were originally recognized as a host defence mechanism in which neutrophils release their nuclear and granular contents to kill pathogens, today it is know that NETs are also involved in the pathogenesis of autoimmune and inflammatory diseases, including microcrystalline arthropathies such as gout and pseudogout. Objective and Methods: The aim of this study is to characterize NETs formation in synovial fluid of patients affected by microcrystal arthritis (gout and pseudogout caused, respectively, by MSU or CPPD crystals) compared to that of arthritis not induced by microcrystals (rheumatoid arthritis, psoriatic arthritis). Our first step was to separate neutrophils from other cells present in synovial fluid of gout, pseudogout and non-microcrystal arthritis samples obtained through arthrocentesis. In order to pursue our goal in these samples we evaluated: -the presence of NETs using an immunofluorescence technique; -the amount of NETs released through a fluorimetric assay measuring extracellular DNA; -the levels of pro-inflammatory cytokines and Neutrophil Elastase (NE) by ELISA test. The potential involvement of RIPK3-MLKL-activated necroptotic pathway in NETs formation were also investigated through the analysis of phosphorylated (p)-MLKL, measured by Western Blot technique. In vitro experiments were also performed to evaluate how neutrophils separated from peripheral blood of healthy donors undergo NETs formation when incubated with MSU or CPPD crystals. Results: The experiments performed in this study showed: -microscope images of NETs structures released by neutrophils obtained from synovial fluid of both microcrystal-induced arthritis and non-microcrystal arthritis; -fluorimetric measurement of NETs released directly correlated to microcrystals concentration present in the synovial fluid; -elevated level of IL-6 in both microcrystal and non-microcrystal arthritis; higher IL-1β, IL-8 and IL-10 concentrations in samples from microcrystal-induced arthritis containing a huge amounts of NETs, respect to microcrystal arthritis samples containing low amounts of NETs and non-microcrystal arthritis; -phosphorylation of MLKL, as an index of necroptotic pathway activation in both microcrystal e non-microcrystal arthritis. In vitro experiments confirmed ex vivo data: -increasing concentrations of MSU and CPPD crystals induce NETs release and necroptosis activation in a dose-dependent manner. Conclusions: In conclusions our data provide evidence of NETs formation in synovial fluid of patients affected by gout, pseudogout and non-microcrystal arthritis. Interestingly, NETs formation appears higher in microcrystal arthritis samples and directly correlates with microcrystals (MSU or CPPD) present in synovial fluid of gout and pseudogout patients. Moreover, activation of RIPK3-MLKL necroptotic pathway seems to be involved in NETs production in all these diseases. Therefore, our study pointed out the importance of RIPK3-MLKL activation in NETs release suggesting this pathway as a potential target to regulate NETs cascade in microcrystal and non-microcrystal arthritis.