Littérature scientifique sur le sujet « Modèle de Kuramoto »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Modèle de Kuramoto ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Modèle de Kuramoto"
Buzanello, Guilhermo L., Ana Elisa D. Barioni et Marcus A. M. de Aguiar. « Matrix coupling and generalized frustration in Kuramoto oscillators ». Chaos : An Interdisciplinary Journal of Nonlinear Science 32, no 9 (septembre 2022) : 093130. http://dx.doi.org/10.1063/5.0108672.
Texte intégralLysenko, I. O. « Analysis of the Formation of Stationary Patterns at the Ion Sputtering within the Anisotropic Kuramoto–Sivashinsky Model ». Ukrainian Journal of Physics 61, no 7 (juillet 2016) : 588–96. http://dx.doi.org/10.15407/ujpe61.07.0588.
Texte intégralÓdor, Géza, István Papp, Shengfeng Deng et Jeffrey Kelling. « Synchronization transitions on connectome graphs with external force ». Frontiers in Physics 11 (9 mars 2023). http://dx.doi.org/10.3389/fphy.2023.1150246.
Texte intégralPeng, Hao, Wei Wang, Pei Chen et Rui Liu. « DEFM : Delay-embedding-based forecast machine for time series forecasting by spatiotemporal information transformation ». Chaos : An Interdisciplinary Journal of Nonlinear Science 34, no 4 (1 avril 2024). http://dx.doi.org/10.1063/5.0181791.
Texte intégralThèses sur le sujet "Modèle de Kuramoto"
Phung, Thanh Tam. « Vers un modèle particulaire de l'équation de Kuramoto-Sivashinsky ». Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00789952.
Texte intégralKoeth, Felix. « Enquêtes sur les propriétés spectrales dans les systèmes électriques ». Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT082.
Texte intégralThis thesis investigates the fundamental properties of a simplified dynamical power system model. These models can be used to study the influence of the geometrical properties of the network describing the power system. These models and some important properties of the models are presented in chapter 1. One of the main challenges in power system research is the complexity of the system. We want to use spectral graph theory to decompose the system into different modes, which can be studied individually. The second chapter introduces the mathematical background of spectral graph theory and the applications to power systems. A simple example for the application of spectral graph theory in power system research is given in chapter 3, where the static power flow system is investigated. We can see that the eigenvalues and eigenvectors of the nodal admittance matrix of the power system can be used to calculate the phases and flows in a static system. The dynamical properties are then deeper investigated in the next chapter. Here, a quadratic eigenvalue problem has to be used to investigate the system. We introduce the fundamental properties of the quadratic eigenvalue problem and the application to power system research. An extensive investigation of the spectral properties of a dynamical power system using the quadratic eigenvalue problem is then performed. We observe short and long range interactions in the system and see that the short range interactions are more sensitive to the machine parameters and are important for the stability of the power system, as they are related to local plant modes. The emergence of this localised behaviour is investigated in chapter 5. We derive two eigenvector bounds which can be used to predict and describe localisation in a network. These bounds are then applied to simple example graphs and a power system test case, to show how they can successfully predict, explain and describe localisation
Oukil, Walid. « Systèmes couplés et morphogénèse auto-organisation de systèmes biologiques ». Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0459/document.
Texte intégralWe study in this thesis a class of a perturbed interconnected mean-field system, also known as a coupled systems. Under some assumptions we prove the existence of an invariant open set by the flow of the perturbed system ; in other word, we prove that the distance between the components of an orbit is uniformly bounded, this property is also called synchronization. We use the perturbation method to obtain the result. However the result is not trivial for the not perturbed system. We use the fixed point theorem to prove the existence of a periodic orbit in the torus. We study in addition the stability and the exponential stability of such systems by studying the stability of a linear systems
El, Ati Ali. « Synchronization analysis of complex networks of nonlinear oscillators ». Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112362/document.
Texte intégralThis thesis is devoted to the analysis of synchronization in large networks of heterogeneous nonlinear oscillators using tools and methods issued from control theory. We consider two models of networks; namely, the Kuramoto model which takes into account only phase coordinates of the oscillators and networks composed of nonlinear Stuart-Landau oscillators interconnected by linear coupling. For the Kuramoto model we construct an auxiliary linear system that preserves information on the natural frequencies and interconnection gains of the original Kuramoto model. We show next that existence of phase locked solutions of the Kuramoto model is equivalent to the existence of such a linear system with certain properties. This system is used to formulate conditions that ensure existence of phase-locked solutions and their stability for particular structures of network interconnections. Next, this analysis is extended to the case where both attractive and repulsive interactions are present in the network that is we consider the situation where some of the interconnection gains are allowed to be negative. In the context of networks of Stuart-Landau oscillators, we present a new coordinate transformation of the network which allows to split the network model into two parts, one describing behaviour of an "averaged" network oscillator and the second one, describing dynamics of the synchronization errors relative to this "averaged" oscillator. This transformation allows us to characterize properties of the network in terms of stability of synchronization errors and limit cycle of the "averaged" oscillator. To do so, we recast this problem as a problem of stability of compact sets and use Lyapunov stability tools to ensure practical stability of both sets for sufficiently large values of the coupling strength
Oukil, Walid. « Systèmes couplés et morphogénèse auto-organisation de systèmes biologiques ». Electronic Thesis or Diss., Bordeaux, 2016. http://www.theses.fr/2016BORD0459.
Texte intégralWe study in this thesis a class of a perturbed interconnected mean-field system, also known as a coupled systems. Under some assumptions we prove the existence of an invariant open set by the flow of the perturbed system ; in other word, we prove that the distance between the components of an orbit is uniformly bounded, this property is also called synchronization. We use the perturbation method to obtain the result. However the result is not trivial for the not perturbed system. We use the fixed point theorem to prove the existence of a periodic orbit in the torus. We study in addition the stability and the exponential stability of such systems by studying the stability of a linear systems
Pinto, Pedro Dias. « Transição de fase no modelo de Kuramoto ». reponame:Repositório Institucional da UnB, 2011. http://repositorio.unb.br/handle/10482/8786.
Texte intégralSubmitted by alcianira lima persch (alcyrpl@yahoo.com.br) on 2011-06-28T18:56:48Z No. of bitstreams: 1 2011_PedroDiasPinto.pdf: 2564047 bytes, checksum: 97b9b2a9bf641f22916bd222874a0c57 (MD5)
Approved for entry into archive by Elna Araújo(elna@bce.unb.br) on 2011-06-29T20:19:23Z (GMT) No. of bitstreams: 1 2011_PedroDiasPinto.pdf: 2564047 bytes, checksum: 97b9b2a9bf641f22916bd222874a0c57 (MD5)
Made available in DSpace on 2011-06-29T20:19:23Z (GMT). No. of bitstreams: 1 2011_PedroDiasPinto.pdf: 2564047 bytes, checksum: 97b9b2a9bf641f22916bd222874a0c57 (MD5)
Uma vasta gama de fenômenos na natureza exibe comportamento de sincronização. Muitas características de sincronização podem ser obtidas por meio de osciladores de fase acoplados. O estudo de osciladores acoplados foi impulsionado por Winfree e posteriormente simplificado por Kuramoto. Neste trabalho estuda-se a transição de fase no modelo de Kuramoto com e sem ruído, considerando as influências dos efeitos de tamanho finito e das distribuições de frequências naturais dos osciladores. Variando o número de osciladores interagentes, é verificada a maneira como propriedades importantes para caracterizar o regime sincronizado convergem para os valores teóricos obtidos no limite termodinâmico. É mostrado que o modo como as frequências naturais são distribuidas define o tipo de transição do modelo. O cálculo da flutuação do parâmetro de ordem na região de transição é proposto para obtenção do acoplamento crítico em grande grupos de osciladores interagentes; este método é útil pois permite estimar o acoplamento crítico de modelos cujas soluções analíticas não são possíveis. ________________________________________________________________________________ ABSTRACT
A broad range of phenomena shows synchronization behavior. Many features of the synchronization can be obtained on phase coupled oscillators. The studying of coupled oscillators was started by Winfree and later simpli ed by Kuramoto. In this work is studied the phase transition in the Kuramoto's model with and without noise, considering in uences from nite-size e ects and natural frequencies distributions of the oscillators. By changing the number of interacting oscillators, it is veri ed how important properties that characterize synchronized states converge towards the theoretical values, which are obtained in the thermodynamical limit. It is also shown how natural frequencies distributions de ne the transition type of the model. It is proposed the use of the order parameter uctuation calculation for obtaining the critical coupling on large groups of interacting oscillators; this method is useful since it allows an estimation of the critical coupling coefficient of models in which analytical solutions are not possible.
Raboanary, Julien. « Contribution a l'analyse mathemaique du modele de kuramoto-sivashinsky ». Toulon, 1990. http://www.theses.fr/1990TOUL0001.
Texte intégralTilles, Paulo Fernando Coimbra [UNESP]. « Um estudo sobre sincronização no modelo de Kuramoto ». Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/102550.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este texto é dedicado ao estudo do fenômeno de sincronização no modelo de Kuramoto. Na primeira parte o foco reside na formulação original do modelo no limite termodinâmico de infinitos osciladores e na descrição da transição para a sincronização e estabilidade das soluções em sistemas com número finito de elementos. Mostra-se também que o acoplamento crítico de sincronização 'K IND s' é determinado por um par de equações, e a solução para um caso especial com simetria na configuração de frequências naturais é obtida de forma perturbativa. A segunda parte do texto é focada na descrição do modelo de Kuramoto com acoplamento local em 1 dimensão com condições periódicas de contorno. A estrutura de árvores de sincronização média é descrita, onde ocorrem transições entre regimes caóticos e periódicos dos movimentos individuais dos osciladores. A iminência da sincronização é explorada através uma série de aproximações que mostram o comportamento crítico característico de uma bifurcação sela-nó responsável pela sincronização. A partir da definição de uma função na região sincronizada é mostrado que o acoplamento crítico de sincronização é obtido exatamente através da minimização dessa função. Através de uma sequência de exemplos de configurações com simetria é mostrado que a região sincronizada do sistema apresenta uma estrutura de múltiplas soluções estáveis, sendo a sua caracterização, análise de estabilidade e descrição das bifurcações realizada para o caso com frequências aleatórias arbitrariamente distribuídas
This text is devoted to the study of the synchronization phenomena in the Kuramoto model. In its first part the focus lies on its original formulation of infinitely many oscillators and on the description of the synchronization transition and solutions’ stability for systems with a finite number of elements. It is shown that a pair of equations characterize the critical synchronization coupling Ks, and the solution for a special case with symmetry on its natural frequencies configuration is obtained in a perturbatively way. The second part of the text is focused on the 1-dimensional Kuramoto model with periodic boundary conditions. The synchronization tree structure is described, where it is observed several transitions between chaotic and periodic regimes among the individual oscillators. The onset on synchronization is explored through a series of approximations that show the characteristic critical behavior of a saddle node bifurcation, which is responsible for the synchronization. By defining a function on the synchronized region it is shown that the critical synchronization coupling is exactly determined by the function’s minimization process. Through a sequence of examples with symmetry on its configurations it is shown that the synchronized region presents a structure of multiple stable solutions. Its complete characterization, stability analysis and bifurcations’ description is carried through for the case with randomly distributed natural frequencies
Tilles, Paulo Fernando Coimbra. « Um estudo sobre sincronização no modelo de Kuramoto / ». São Paulo : [s.n.], 2011. http://hdl.handle.net/11449/102550.
Texte intégralCoorientador: Fernando Fagundes Ferreira
Banca: Mauro Copelli
Banca: Ricardo Luiz Viana
Banca: Paulo Laerte Natti
Banca: Tiago Pereira da Silva
Resumo: Este texto é dedicado ao estudo do fenômeno de sincronização no modelo de Kuramoto. Na primeira parte o foco reside na formulação original do modelo no limite termodinâmico de infinitos osciladores e na descrição da transição para a sincronização e estabilidade das soluções em sistemas com número finito de elementos. Mostra-se também que o acoplamento crítico de sincronização 'K IND s' é determinado por um par de equações, e a solução para um caso especial com simetria na configuração de frequências naturais é obtida de forma perturbativa. A segunda parte do texto é focada na descrição do modelo de Kuramoto com acoplamento local em 1 dimensão com condições periódicas de contorno. A estrutura de árvores de sincronização média é descrita, onde ocorrem transições entre regimes caóticos e periódicos dos movimentos individuais dos osciladores. A iminência da sincronização é explorada através uma série de aproximações que mostram o comportamento crítico característico de uma bifurcação sela-nó responsável pela sincronização. A partir da definição de uma função na região sincronizada é mostrado que o acoplamento crítico de sincronização é obtido exatamente através da minimização dessa função. Através de uma sequência de exemplos de configurações com simetria é mostrado que a região sincronizada do sistema apresenta uma estrutura de múltiplas soluções estáveis, sendo a sua caracterização, análise de estabilidade e descrição das bifurcações realizada para o caso com frequências aleatórias arbitrariamente distribuídas
Abstract: This text is devoted to the study of the synchronization phenomena in the Kuramoto model. In its first part the focus lies on its original formulation of infinitely many oscillators and on the description of the synchronization transition and solutions' stability for systems with a finite number of elements. It is shown that a pair of equations characterize the critical synchronization coupling Ks, and the solution for a special case with symmetry on its natural frequencies configuration is obtained in a perturbatively way. The second part of the text is focused on the 1-dimensional Kuramoto model with periodic boundary conditions. The synchronization tree structure is described, where it is observed several transitions between chaotic and periodic regimes among the individual oscillators. The onset on synchronization is explored through a series of approximations that show the characteristic critical behavior of a saddle node bifurcation, which is responsible for the synchronization. By defining a function on the synchronized region it is shown that the critical synchronization coupling is exactly determined by the function's minimization process. Through a sequence of examples with symmetry on its configurations it is shown that the synchronized region presents a structure of multiple stable solutions. Its complete characterization, stability analysis and bifurcations' description is carried through for the case with randomly distributed natural frequencies
Doutor
Luçon, Eric. « Oscillateurs couplés, désordre et synchronisation ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00709998.
Texte intégralChapitres de livres sur le sujet "Modèle de Kuramoto"
Fioriti, Vincenzo, Silvia Ruzzante, Elisa Castorini, Elena Marchei et Vittorio Rosato. « Stability of a Distributed Generation Network Using the Kuramoto Models ». Dans Lecture Notes in Computer Science, 14–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03552-4_2.
Texte intégralFeketa, Petro, Alexander Schaum et Thomas Meurer. « Synchronization Phenomena in Oscillator Networks : From Kuramoto and Chua to Chemical Oscillators ». Dans Springer Series on Bio- and Neurosystems, 385–406. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_16.
Texte intégralSoleimani, Javad, Reza Farhangi, Gunes Karabulut Kurt et Fatemeh Mechershavi. « Analytical Analysis of Power Network Stability : Necessary and Sufficient Conditions ». Dans ICT for Smart Grid - Recent Advances, New Perspectives, and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003734.
Texte intégralSchulman, L. S. « Biological sciences ». Dans When Things Grow Many, 140–79. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198861881.003.0010.
Texte intégralElezgaray, Juan, Gal Berkooz, Harry Dankowicz, Philip Holmes et Mark Myers. « Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation ». Dans Multiscale Wavelet Methods for Partial Differential Equations, 441–71. Elsevier, 1997. http://dx.doi.org/10.1016/s1874-608x(97)80013-1.
Texte intégralNolte, David D. « Network Dynamics ». Dans Introduction to Modern Dynamics, 207–42. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844624.003.0007.
Texte intégral« Parabolic Equations in One Dimension : Thin Film, Kuramoto-Sivashinsky, and Magma Models ». Dans Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, 128–93. Chapman and Hall/CRC, 2006. http://dx.doi.org/10.1201/9781420011623-9.
Texte intégralActes de conférences sur le sujet "Modèle de Kuramoto"
Wenxue Wang et Bijoy Ghosh. « Kuramoto Models, Coupled Oscillations and laser networks ». Dans SICE Annual Conference 2007. IEEE, 2007. http://dx.doi.org/10.1109/sice.2007.4420964.
Texte intégralWenxue Wang et B. K. Ghosh. « Detection of depth in binocular visual systems using Kuramoto models ». Dans 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1656557.
Texte intégralGall, Walter, Ying Zhou et Joseph Salisbury. « Synchronization of a Network With Piecewise-Linear Dynamics ». Dans ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4230.
Texte intégralDemetriou, Michael A. « Adaptive alternatives in the velocity control of Mean-Field Kuramoto Models ». Dans 2023 American Control Conference (ACC). IEEE, 2023. http://dx.doi.org/10.23919/acc55779.2023.10156040.
Texte intégralXu, Qing, Shitao Wang, Jiayi Liu, Huihui Song et Yanbin Qu. « Analysis of Kuramoto models for AC microgrids based on droop control ». Dans 2022 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2022. http://dx.doi.org/10.1109/ispec54162.2022.10033040.
Texte intégralLiu, Zhao, et Ziang Zhang. « Quantifying transient stability of generators by basin stability and Kuramoto-like models ». Dans 2017 North American Power Symposium (NAPS). IEEE, 2017. http://dx.doi.org/10.1109/naps.2017.8107260.
Texte intégralAjala, Olaoluwapo, Nathan Baeckeland, Sairaj Dhople et Alejandro Dominguez-Garcia. « Uncovering the Kuramoto Model from Full-order Models of Grid-forming Inverter-based Power Networks ». Dans 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683125.
Texte intégralKlein, Daniel J., Phillip Lee, Kristi A. Morgansen et Tara Javidi. « Integration of communication and control using discrete time Kuramoto models for multivehicle coordination over broadcast networks ». Dans 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434294.
Texte intégralGopakumar, Ramachandran, Rahul Belur Vishwanath, Jasmeet Singh, Ankit Dutta et Swetaprovo Chaudhuri. « On the Dynamics of Instability Mitigation by Actuating Swirler Motion in a Lean Premixed Turbulent Combustor ». Dans ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4710.
Texte intégralFerreira, Maria Teodora, Celso B. N. Freitas, Margarete O. Domingues et Elbert E. N. Macau. « Modelo de kuramoto e a verificacção da diferenc¸a de fase usando uma metodologia baseada na transformada wavelet complexa dual-tree : resultados preliminares ». Dans DINCON 2013 – Conferência Brasileira de Dinâmica, Controle e Aplicações. SBMAC, 2013. http://dx.doi.org/10.5540/03.2013.001.01.0127.
Texte intégral