Littérature scientifique sur le sujet « Monthly forecast »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Monthly forecast ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Monthly forecast"
Lavaysse, C., J. Vogt et F. Pappenberger. « Early warning of drought in Europe using the monthly ensemble system from ECMWF ». Hydrology and Earth System Sciences 19, no 7 (28 juillet 2015) : 3273–86. http://dx.doi.org/10.5194/hess-19-3273-2015.
Texte intégralLepore, Chiara, Michael K. Tippett et John T. Allen. « CFSv2 Monthly Forecasts of Tornado and Hail Activity ». Weather and Forecasting 33, no 5 (24 septembre 2018) : 1283–97. http://dx.doi.org/10.1175/waf-d-18-0054.1.
Texte intégralLavaysse, C., J. Vogt et F. Pappenberger. « Early warning of drought in Europe using the monthly ensemble system from ECMWF ». Hydrology and Earth System Sciences Discussions 12, no 2 (13 février 2015) : 1973–2009. http://dx.doi.org/10.5194/hessd-12-1973-2015.
Texte intégralLee, Cai Lin, et Dong Mei Wang. « Monthly Runoff Probabilistic Forecast Model Based on Similar Process Derivations ». Applied Mechanics and Materials 737 (mars 2015) : 710–14. http://dx.doi.org/10.4028/www.scientific.net/amm.737.710.
Texte intégralTippett, Michael K., Laurie Trenary, Timothy DelSole, Kathleen Pegion et Michelle L. L’Heureux. « Sources of Bias in the Monthly CFSv2 Forecast Climatology ». Journal of Applied Meteorology and Climatology 57, no 5 (mai 2018) : 1111–22. http://dx.doi.org/10.1175/jamc-d-17-0299.1.
Texte intégralAptukov, Valery N., et Victor Yu Mitin. « STATISTICAL MODELS FOR FORECASTING AVERAGE MONTHLY TEMPERATURE AND MONTHLY PRECIPITATION AMOUNT IN PERM ». Географический вестник = Geographical bulletin, no 2(57) (2021) : 84–95. http://dx.doi.org/10.17072/2079-7877-2021-2-84-95.
Texte intégralFundel, F., S. Jörg-Hess et M. Zappa. « Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices ». Hydrology and Earth System Sciences 17, no 1 (29 janvier 2013) : 395–407. http://dx.doi.org/10.5194/hess-17-395-2013.
Texte intégralQiao, Guangchao, Mingxiang Yang et Xiaoling Zeng. « Monthly-scale runoff forecast model based on PSO-SVR ». Journal of Physics : Conference Series 2189, no 1 (1 février 2022) : 012016. http://dx.doi.org/10.1088/1742-6596/2189/1/012016.
Texte intégralWang, Ting, et Xi Miao Jia. « Monthly Load Forecasting Based on Optimum Grey Model ». Advanced Materials Research 230-232 (mai 2011) : 1226–30. http://dx.doi.org/10.4028/www.scientific.net/amr.230-232.1226.
Texte intégralMilléo, Carla, et Ricardo Carvalho de Almeida. « Application of RBF artificial neural networks to precipitation and temperature forecasting in Paraná, Brazil ». Ciência e Natura 43 (1 mars 2021) : e40. http://dx.doi.org/10.5902/2179460x43258.
Texte intégralThèses sur le sujet "Monthly forecast"
MENDES, EVANDRO LUIZ. « INTERVENTION MODELS TO FORECAST MONTHLY DEMAND OF ELETRIC ENERGY, CONSIDERING THE RATIONING SCENERY ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3336@1.
Texte intégralNesta dissertação é desenvolvida uma metodologia para previsão de demanda mensal de energia elétrica considerando cenários de racionamento. A metodologia usada consiste em, a partir das taxas de crescimento da série temporal, identificar e eliminar os efeitos do racionamento de energia elétrica através da aplicação de Modelos Lineares Dinâmicos. São analisadas também estruturas de intervenção nos modelos estatísticos de Box & Jenkins e Holt & Winters. Os modelos são então comparados segundo alguns critérios, basicamente no que tange à sua eficiência preditiva. Conclui-se ao final sobre a eficiência da metodologia proposta, dado a grande dificuldade para solucionar o problema a partir dos modelos estatísticos de Box & Jenkins e Holt & Winters. Esta solução é então proposta como a mais viável para criar cenários de racionamento e pósracionamento de energia para ser utilizado por agentes do sistema elétrico nacional.
In this dissertation, a methodology is developed to forecast monthly demand of electric energy, considering the rationing scenery. The methodology is based on, taking the growth rate from the time series, identify and eliminate the effects of electric energy rationing, using Dynamic Linear Models. It is also analyzed intervention structures in the statistics models of Box & Jenkins and Holt & Winters. The models are compared according to some criterions, mainly forecast accuracy. At the end, we concluded that the methodology proposed is more efficient, due to the difficult to solve the problem using the statistics models with intervention. This solution is proposed as the best among them to create scenery during the energy rationing and after energy rationing, to be used by the national electric system agents.
Robertson, Fredrik, et Max Wallin. « Forecasting monthly air passenger flows from Sweden : Evaluating forecast performance using the Airline model as benchmark ». Thesis, Uppsala universitet, Statistiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-242764.
Texte intégralRENDINA, Cristian. « STUDY OF THE IMPACT OF MODELLING SEA SURFACE TEMPERATURE IN A MONTHLY ATMOSPHERIC ENSEMBLE PREDICTION SYSTEM ». Doctoral thesis, Università degli studi di Ferrara, 2012. http://hdl.handle.net/11392/2389449.
Texte intégralAider, Rabah. « Skill of monthly and seasonal forecasts using a Canadian general circulation model ». Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32296.
Texte intégralUne analyse de la co-variabilité entre la température de l'air au sol (SAT) ainsi que les précipitations en Amérique du Nord et la température de l'océan Pacifique à la surface (SST), a été faite en utilisant la méthode SVD. Le mode dominant de la SVD a révélé une relation forte entre les anomalies de la SST du mois de novembre et celles de la SAT et des précipitations hivernales. Ce lien est beaucoup plus faible en été. Le modèle GCM3 reproduit assez bien la réponse au forçage de la SST, particulièrement sur les patrons de la SAT, mais sa réponse est beaucoup moins précise en été. Les prévisions mensuelles et saisonnières de GCM3 ont aussi été analysées. Les capacités de GCM3 à prévoir les précipitations sont faibles, surtout en été où le forçage de la SST est aussi faible. De plus, le modèle ne possède pas d'habiletés notables à prédire les sécheresses dans les prairies Canadiennes. Par contre, les capacités prévisionnelles du modèle concernant la SAT et le géopotentiel à 500 hPa sont généralement assez élevées, particulièrement en hivers. Les habiletés de GCM3 sont concentrées dans le premier mois de la période de prévision, puis déclinent lorsque le délai d'émission est prolongé.
Kim, Young-Oh. « The value of monthly and seasonal forecasts in Bayesian stochastic dynamic programming / ». Thesis, Connect to this title online ; UW restricted, 1996. http://hdl.handle.net/1773/10142.
Texte intégralMaitaria, Kazungu. « ENABLING HYDROLOGICAL INTERPRETATION OF MONTHLY TO SEASONAL PRECIPITATION FORECASTS IN THE CORE NORTH AMERICAN MONSOON REGION ». Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/193926.
Texte intégralTennant, Warren James. « A monthly forecast strategy for Southern Africa ». Thesis, 1998. https://hdl.handle.net/10539/26794.
Texte intégralVarious techniques and procedures suited to monthly forecasting are investigated and tested. These include using the products generated by atmospheric general circulation models during a 17-year hindcast experiment, and downscaling the forecast circulation to regional rainfall in South Africa using circulation indices and canonical correlation analysis. The downscaling methods are evaluated using the cross-validation technique. Various model forecast bias-correction methods and skill-enhancing ensemble techniques are employed to improve the 30-day prognosis of the model. Forecasts from the general circulation model and each technique are evaluated. Those demonstrating reasonable skill over the southern Africa region, and which are feasible when considering available resources, are adopted into a strategy which can be used operationally to produce monthly outlooks. Various practical issues regarding the operational aspects of long-term forecasting are also discussed.
Andrew Chakane 2019
Pei-MinZhao et 趙培珉. « Dry Season Monthly Rainfall Forecast for Tseng-Wen Reservoir Catchment ». Thesis, 2015. http://ndltd.ncl.edu.tw/handle/17441733305543664412.
Texte intégralTseng, Pin-Han, et 曾品涵. « A development of statistic forecast system for pentad to monthly scales prediction ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/28490115029542569801.
Texte intégral國立中央大學
大氣物理研究所
98
ABSTRACT The main purpose of this research is to develop a statistic forecast system for pentad to monthly scales prediction. The basic structure of this system was built by the persistence neutralization method and the linear regressive model. The persistence neutralization method filtered out the persistence of variables to distinguish the relationship between lead time and lag time. It had better performance than the persistence forecast. At first, the persistence neutralization method was used to transform the variables of predictand for neutralizing the persistence effect in climate data. Then, the predictive predictors were picked out by using the linear regressive model to develop a statistic forecast system for pentad to monthly scales prediction. 60 climate variables were used, including the outgoing longwave radiation (OLR), sea surface temperature (SST), estimated precipitation version1 (Precip), and mean sea level pressure (mslp), etc. Because each variable had different seasonal influence, the annual data were divided into six periods to construct the prediction system. First, we used the persistence neutralization method and the linear regressive model to neutralize and filter out of the persistence effect in 60 kinds of climate variables. The OLR field was used to be predictand and all 60 climate variables were used to be predictors. Each predictors had different predictive skill in different periods. We calculated the correlation coefficient and root mean square errors between OLR (predictand) and all climate variables. The spacial distribution of correlation coefficient between 40oS and 40oN was exhibited the relationship between predictand and predictors. 11 variables were selected in January and February. The correlation coefficient was more than 0.8 over the tropical Eastern Pacific and exceeded 0.6 in the north of Australia, Indonesia, Philippine, and South China Sea. In March and April, the correlation coefficient was more than 0.8 from the date line to 70oW on tropical Eastern Pacific and was about 0.6 near 120oE from 10oN to the Equator. In May and June, the correlation coefficient was 0.7 near 120oW on tropical Pacific Ocean, from 160oE to 70oW in Pacific Ocean, South America, and Australia. There was more than 0.8 in South Africa. High correlation exited from 0oE to 60oE and 40oN to 20oS in July and August. In September and October, the correlation coefficient was more than 0.7 from 120oE to 0oE and 40oN to 20oS and was 0.6 near 20oS in South America. The correlation coefficient in November and December were similar to September and October. But the atmos column precipitation water and absolute vorticity on 850hPa showed the best predictive skill to predict OLR. The high correlation areas between predictand and each predictor were dissimilar in different periods, but displayed consistency in same period.
Lai, Chia Liang, et 賴佳良. « Application of Soft Computing Techniques with Fourier Series to Forecast Monthly Electricity Demand ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/23171218166774438081.
Texte intégral國立清華大學
工業工程與工程管理學系
104
The information from electricity demand forecasting helps energy generation enterprises develop an electricity supply system. This study aims to develop a monthly electricity forecasting model to predict the electricity demand for energy management. Given that the influence of weather factors, such as temperature and humidity, is diluted in the overall monthly electricity demand, the forecasting model uses historical electricity consumption data as an integrated factor to obtain future prediction. The proposed approach is applied to a monthly electricity demand time series forecasting model that includes trend and fluctuation series, of which the former describes the trend of the electricity demand series and the latter describes the periodic fluctuation imbedded in the trend. An integrated genetic algorithm and neural network model (GANN) is then trained to forecast the trend series. Given that the fluctuation series demonstrates an oscillatory behavior, we apply Fourier series to fit the fluctuation series. The complete demand model is named GANN–Fourier series. U.S. electricity demand data are used to evaluate the proposed model and to compare the results of applying this model with those of using conventional neural networks.
Livres sur le sujet "Monthly forecast"
Wehelie, Yassin Jeyte. Maize price seasonality : An analysis of monthly retail maize prices in Mogadishu from January 1979 to December 1986 (with 1987 monthly maize forecast prices). [Mogadishu] : Ministry of Agriculture, Planning Directorate, 1987.
Trouver le texte intégralFielder, Lonnie L. Analysis, forecasts, and seasonal patterns of monthly prices and quantities, Louisiana farm products. Baton Rouge, La : Dept. of Agricultural Economics and Agribusiness, Louisiana Agricultural Experiment Station, 1985.
Trouver le texte intégralplc, Waste Recycling Group. Merger with Yorkshire Environmental Global Waste Management : Interim results for the six months ended 30 June 1998 : profit forecast. Norwich : Waste Recycling Group, 1998.
Trouver le texte intégralStaff, Insignia Accounts. Monthly Cash Forecast Template. Independently Published, 2017.
Trouver le texte intégralStaff, Insignia Accounts. Monthly Template Cash Flow Forecast. Independently Published, 2017.
Trouver le texte intégralStaff, Insignia Accounts. Monthly Cash Flow Forecast Template. Independently Published, 2017.
Trouver le texte intégralStaff, Insignia Accounts. Monthly Cash Flow Forecast Spreadsheet. Independently Published, 2017.
Trouver le texte intégralStaff, Insignia Accounts. Monthly Cash Flow Forecast Format. Independently Published, 2017.
Trouver le texte intégralStaff, Insignia Accounts. Monthly Template for Cash Flow Forecast. Independently Published, 2017.
Trouver le texte intégralLazuli, Lisa. Aquarius Horoscope 2019 : Yearly and Monthly Astrology Forecast. Independently Published, 2019.
Trouver le texte intégralChapitres de livres sur le sujet "Monthly forecast"
Mounter, William, Huda Dawood et Nashwan Dawood. « The Impact of Data Segmentation in Predicting Monthly Building Energy Use with Support Vector Regression ». Dans Springer Proceedings in Energy, 69–76. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_9.
Texte intégralAraujo, Ruben, Meuser Valenca et Sergio Fernandes. « A New Approach of Fuzzy Neural Networks in Monthly Forecast of Water Flow ». Dans Advances in Computational Intelligence, 576–86. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19258-1_47.
Texte intégralWu, Shanshan, Xiang Wang et Hengyue Hou. « Monthly Power Consumption Forecast of the Whole Society Based on Mixed Data Sampling Model ». Dans Lecture Notes in Electrical Engineering, 662–68. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8052-6_82.
Texte intégralAkeh, Ugbah Paul, Steve Woolnough et Olumide A. Olaniyan. « ECMWF Subseasonal to Seasonal Precipitation Forecast for Use as a Climate Adaptation Tool Over Nigeria ». Dans African Handbook of Climate Change Adaptation, 1613–30. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_97.
Texte intégralMartinho, A. D., T. L. Fonseca et L. Goliatt. « Automated Extreme Learning Machine to Forecast the Monthly Flows : A Case Study at Zambezi River ». Dans Advances in Intelligent Systems and Computing, 1314–24. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71187-0_122.
Texte intégralAmoo, Oseni Taiwo, Hammed Olabode Ojugbele, Abdultaofeek Abayomi et Pushpendra Kumar Singh. « Hydrological Dynamics Assessment of Basin Upstream–Downstream Linkages Under Seasonal Climate Variability ». Dans African Handbook of Climate Change Adaptation, 2005–24. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_116.
Texte intégralArndt, Channing, et Kenneth Foster. « Forecasts of Monthly U.S. Wheat Prices : A Spatial Market Analysis ». Dans Applications of Computer Aided Time Series Modeling, 91–105. New York, NY : Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2252-1_4.
Texte intégralDouglas, James W., et Ringa Raudla. « CBO Updated Forecasts : Do a Few Months Matter ? » Dans The Palgrave Handbook of Government Budget Forecasting, 133–52. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18195-6_7.
Texte intégralBarbaglia, Luca, Sergio Consoli et Sebastiano Manzan. « Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting ». Dans Mining Data for Financial Applications, 135–49. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66981-2_11.
Texte intégralHowrey, E. Philip. « New Methods for Using Monthly Data to Improve Forecast Accuracy ». Dans Comparative Performance of U.S. Econometric Models, 227–49. Oxford University Press, 1991. http://dx.doi.org/10.1093/acprof:oso/9780195057720.003.0008.
Texte intégralActes de conférences sur le sujet "Monthly forecast"
Guo, Huifang, Zengchuan Dong, Xin Chen, Xixia Ma et Peiyan Zhang. « WANN Model for Monthly Runoff Forecast ». Dans 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop (KAM 2008 Workshop). IEEE, 2008. http://dx.doi.org/10.1109/kamw.2008.4810682.
Texte intégralSharma, Ashutosh, et Manish Kumar Goyal. « Bayesian network model for monthly rainfall forecast ». Dans 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, 2015. http://dx.doi.org/10.1109/icrcicn.2015.7434243.
Texte intégralBerriel, Rodrigo F., Andre Teixeira Lopes, Alexandre Rodrigues, Flavio Miguel Varejao et Thiago Oliveira-Santos. « Monthly energy consumption forecast : A deep learning approach ». Dans 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966398.
Texte intégralCotrina-Teatino, Marco Antonio, Jairo Jhonatan Marquina Araujo, Eduardo Manuel Noriega Vidal, Juan Antonio Vega Gonzalez, Solio Marino Arango Retamozo, Hans Roger Portilla Rodriguez et Aldo Roger Castillo Chung. « Copper Monthly Price Forecast with Time Series Models ». Dans 2nd LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development (LEIRD 2022) : “Exponential Technologies and Global Challenges : Moving toward a new culture of entrepreneurship and innovation for sustainable development”. Latin American and Caribbean Consortium of Engineering Institutions, 2022. http://dx.doi.org/10.18687/leird2022.1.1.6.
Texte intégralQifeng, Xu, Wang Qiang, Yao Zhilin et Liu Shufen. « The Monthly Electricity Load Forecast Based on Composite Model ». Dans 2015 7th International Conference on Information Technology in Medicine and Education (ITME). IEEE, 2015. http://dx.doi.org/10.1109/itme.2015.57.
Texte intégralBeiraghi, M., et A. M. Ranjbar. « Discrete Fourier Transform Based Approach to Forecast Monthly Peak Load ». Dans 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5748585.
Texte intégralChia-Liang Lai et Hsiao-Fan Wang. « Application of soft computing techniques to forecast monthly electricity demand ». Dans 2015 International Conference on Industrial Engineering and Operations Management (IEOM). IEEE, 2015. http://dx.doi.org/10.1109/ieom.2015.7093922.
Texte intégralDilini, W. M. N., Dilhari Attygalle, Liwan Liyanage Hansen et K. D. W. Nandalal. « Ensemble Forecast for monthly Reservoir Inflow ; A Dynamic Neural Network Approach ». Dans Annual International Conference on Operations Research and Statistics ( ORS 2016 ). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2251-1938_ors16.22.
Texte intégralShabri, Ani, et Ruhaidah Samsudin. « Application of Improved GM(1,1) Models in Seasonal Monthly Tourism Demand Forecast ». Dans 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). IEEE, 2019. http://dx.doi.org/10.1109/aidas47888.2019.8970945.
Texte intégralNan, Linjiang, Mingxiang Yang, Jianqiu Li, Ningpeng Dong et Hejia Wang. « Monthly Precipitation Forecast of Jiulong River Basin Based on Association Rule Analysis ». Dans 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). IEEE, 2021. http://dx.doi.org/10.1109/icitbs53129.2021.00210.
Texte intégralRapports d'organisations sur le sujet "Monthly forecast"
Wendy, Disch. ESRI Nowcast October 2022. ESRI, octobre 2022. http://dx.doi.org/10.26504/ir1.
Texte intégralDe Castro-Valderrama, Marcela, Santiago Forero-Alvarado, Nicolás Moreno-Arias et Sara Naranjo-Saldarriaga. Unraveling the Exogenous Forces Behind Analysts' Macroeconomic Forecasts. Banco de la República, décembre 2021. http://dx.doi.org/10.32468/be.1184.
Texte intégralVenäläinen, Ari, Sanna Luhtala, Mikko Laapas, Otto Hyvärinen, Hilppa Gregow, Mikko Strahlendorff, Mikko Peltoniemi et al. Sää- ja ilmastotiedot sekä uudet palvelut auttavat metsäbiotaloutta sopeutumaan ilmastonmuutokseen. Finnish Meteorological Institute, janvier 2021. http://dx.doi.org/10.35614/isbn.9789523361317.
Texte intégralMonetary Policy Report - April 2022. Banco de la República, juin 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr2-2022.
Texte intégralMonetary Policy Report - July de 2021. Banco de la República, octobre 2021. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr3-2021.
Texte intégralMonetary Policy Report - July 2022. Banco de la República, octobre 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr3-2022.
Texte intégralMonetary Policy Report - January 2022. Banco de la República, mars 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr1-2022.
Texte intégralFinancial Stability Report - Second Semester of 2020. Banco de la República de Colombia, mars 2021. http://dx.doi.org/10.32468/rept-estab-fin.sem2.eng-2020.
Texte intégral