Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Moving planes method.

Thèses sur le sujet « Moving planes method »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 15 meilleures thèses pour votre recherche sur le sujet « Moving planes method ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Barboza, Eudes Mendes. "Classificação de soluções de algumas equações elípticas não lineraes." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/8027.

Texte intégral
Résumé :
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-22T11:11:05Z No. of bitstreams: 1 arquivototal.pdf: 1833639 bytes, checksum: aaa2e895cd2ba1edb07718225c7443ba (MD5)<br>Made available in DSpace on 2016-03-22T11:11:05Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1833639 bytes, checksum: aaa2e895cd2ba1edb07718225c7443ba (MD5) Previous issue date: 2013-07-26<br>Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq<br>In this work, we classify the solutions of the equation u + fue = 0 in R2 or R2 +. For this, we use basically the Moving Planes Method an
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rizzi, Matteo. "Qualitative properties and construction of solutions to some semilinear elliptic PDEs." Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4914.

Texte intégral
Résumé :
This thesis is devoted to the study of elliptic equations. On the one hand, we study some qualitative properties, such as symmetry of solutions, on the other hand we explicitly construct some solutions vanishing near some fixed manifold. The main techniques are the moving planes method, in order to investigate the qualitative properties and the Lyapunov-Schmidt reduction.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Costa, Ricardo Pinheiro da. "Propriedades de simetria para soluções de equações elípticas quase lineares em modelos riemannianos." Universidade Federal da Paraí­ba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7436.

Texte intégral
Résumé :
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1326144 bytes, checksum: 8caf7598b3ff31900cccda592a06981f (MD5) Previous issue date: 2014-07-25<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>In this work we investigate monotonicity and symmetry properties of of solutions to equations involving the p-Laplace-Beltrami operator in hyperbolic space and sphere. The main tools used to obtain the result is a variant of the method of moving planes and a careful use of the maximum and comparison principles<br>Neste trabalh
Styles APA, Harvard, Vancouver, ISO, etc.
4

SOAVE, NICOLA. "Variational and geometric methods for nonlinear differential equations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.

Texte intégral
Résumé :
This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variationa
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nugroho, Widijanto Satyo. "Waves generated by a load moving on an ice sheet over water." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ32720.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

"The method of moving planes and its applications." 1998. http://library.cuhk.edu.hk/record=b5889650.

Texte intégral
Résumé :
by Choi Chun-Man.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.<br>Includes bibliographical references (leaves 56-58).<br>Abstract also in Chinese.<br>Chapter 1 --- Radial symmetry for solutions of a semilinear el- liptic equation on a bounded domain --- p.6<br>Chapter 2 --- Asymptotic symmetry of singular solutions to a semilinear elliptic equation --- p.12<br>Chapter 2.1 --- Introduction --- p.12<br>Chapter 2.2 --- Some preliminary analysis --- p.14<br>Chapter 2.3 --- Proof of Theorem 2.1 --- p.20<br>Chapter 3 --- Classification of non-negative solutions to Yamabe type equ
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tsai, Ya-Ju, and 蔡雅如. "The Method of Moving Planes and Sliding Method Applied to Elliptic Partial Differential Equations." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/22288269777198354145.

Texte intégral
Résumé :
碩士<br>國立臺灣大學<br>數學研究所<br>88<br>The Method of Moving Planes and the Sliding Method are simple and powerful techniques in proving the symmetry and monotonicity in, say, the $x_1$ direction for a solution of an elliptic equation. They rely on the "Maximum Principle in Small Domain." Following a discussion similar to that in "On the method of moving planes and the sliding mehtod" by Beresycki and Nirenberg, we apply the methods to $u \in W_{loc}^{2,n+1}(\Omega ) \cap C^0(\overline{\Omega})$ which satisfies the nonlinear elliptic equation $F(x, u, Du, D^2u) = 0$ in an arbitrar
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yen-ChunMiao and 苗延鈞. "Analysis of Plates by the Moving Least Work Method." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/fudr48.

Texte intégral
Résumé :
碩士<br>國立成功大學<br>土木工程學系<br>106<br>In this thesis, the Moving Least Work (MLW) method is used to model the mechanical behaviors of Mindlin Plates. This method uses the Moving Least Work approach to establish approximating functions. In the weight-residual problem precess, the residual value is multiplied by the weight function and multiplied by the conjugate residual value, so that it contains the conception of the least work. Finally we used the point collocation method to get the solutions of displacement fields and stress resultant fields. The simply supported Mindlin plate is modeled und
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chang-ChingLiu and 劉昶慶. "Analysis of Mindlin Plates by the Moving Trefftz Method." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/gqehtv.

Texte intégral
Résumé :
碩士<br>國立成功大學<br>土木工程學系<br>106<br>In this thesis, we derive a numerical method named Moving Trefftz Method to simulate the mechanical behavior of Mindlin Plates. In order to incorporate the essential and natural boundary conditions into the variational principle, we adopt the Hellinger-Reissner variational principle. The characteristic of this method is adopting the concept of the Trefftz Method. We choose the functions that satisfy the differential equations as the basis of the local approximation function. By using the moving approximation of the Meshless Method in the modified H-R variationa
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hao-ChunChuang and 莊皓鈞. "Buckling Analysis of Plates by the Moving Least Square Method." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/06024890717604809632.

Texte intégral
Résumé :
碩士<br>國立成功大學<br>土木工程學系碩博士班<br>100<br>In this paper, we use Moving Least Square Method and shear deformation theory of plates to analyze the buckling of plates. Using the moving least square technique, we attempt to reduce the residuals that results from the approximation to the field variables, the governing equations and the boundary conditions. The process lead to a numerical method to analyze the buckling of plates. In numerical example, we calculate the buckling lead of a plate with simply supported or clamped edges, and the plate size with aspect ratio of 0.5 to 3,and thickness ratio of 0
Styles APA, Harvard, Vancouver, ISO, etc.
11

闕國賢. "Implicit Virtual Boundary Method for Moving Flat Plates of Zero Thickness." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/15326129747149750219.

Texte intégral
Résumé :
碩士<br>國立清華大學<br>動力機械工程學系<br>102<br>We apply an implicit virtual boundary method with non-staggered coordinate grid system to zero thickness flat plate. Also we use a patch grid to reduce the calculating time and keep the accuracy at the same time. This method can solve the immersed boundary problem for a zero thickness flat plate accurately, no matter it is vertical or with arbitrary angle. We also apply a method to calculate a flying dragonfly, which we won’t need to assume the wings as elliptical geometries with thin thickness, but directly solve them as a zero thickness problem and successf
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chun-WeiLin and 林均威. "Constrained Moving Least Square Method for the Analysis of Classical Plates." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/05945320882373714274.

Texte intégral
Résumé :
碩士<br>國立成功大學<br>土木工程學系碩博士班<br>101<br>This thesis presents a constrained moving least square method to solve the problems of the classical plate. The novelty of this approach is that, constraints are added to make the approximate function satisfy the governing equation and boundary conditions while the approximate function is established by the moving least square approach. To analyze the problems of the high order differential equation, such as classic plates, we attempt to reduce the weighted sum of the residuals that results from the approximation to the field variable and its first derivati
Styles APA, Harvard, Vancouver, ISO, etc.
13

-TingHsu, Chuan, and 徐傳婷. "Constrained Moving Least Square Method for the Analysis of Mindlin Plates." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/53657644012942628680.

Texte intégral
Résumé :
碩士<br>國立成功大學<br>土木工程學系碩博士班<br>101<br>In this thesis, the moving least square method is used to analyze the mechanical problems of Mindlin plates. The novelty of this approach is that, we add constraint into the moving least square approach to establish the approximate function, so that it satisfies both the differential equation and boundary conditions. In numerical examples, we analyze the problem to obtain the deflection, rotation, bending moment and shear force of the plates under different loads and boundary conditions, and compare the numerical results with the exact solution to examine
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wun-ShinLee and 李文歆. "Application of moving least square method for large deformation analysis of plates." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/85755052293587975499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Yan-ZongJhang and 張延宗. "The Moving Least Square Methods Based on State Variables and Hermite Type Approximation for The Analysis of Classical Plates." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/41806122825985736472.

Texte intégral
Résumé :
碩士<br>國立成功大學<br>土木工程學系<br>102<br>The moving least square methods (MLS) based on state variables and Hermite type approximation are proposed to analyze classical plate problems. For the method based on state variables, the fourth order governing partial differential equation for a plate is decomposed into eight coupled partial differential equations of first order. The approximate functions of state variables are constructed. For the method based on the Hermite type, the residuals of the approximation at each node is considered not only the primary variable and its first-order derivatives, but
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!