Articles de revues sur le sujet « Moving planes method »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Moving planes method ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Dancer, E. N. "Some notes on the method of moving planes." Bulletin of the Australian Mathematical Society 46, no. 3 (1992): 425–34. http://dx.doi.org/10.1017/s0004972700012089.
Texte intégralLi, Yan Yan. "Harnack Type Inequality: the Method of Moving Planes." Communications in Mathematical Physics 200, no. 2 (1999): 421–44. http://dx.doi.org/10.1007/s002200050536.
Texte intégralBerestycki, H., and L. Nirenberg. "On the method of moving planes and the sliding method." Boletim da Sociedade Brasileira de Matem�tica 22, no. 1 (1991): 1–37. http://dx.doi.org/10.1007/bf01244896.
Texte intégralChen, Wenxiong, Pengyan Wang, Yahui Niu, and Yunyun Hu. "Asymptotic method of moving planes for fractional parabolic equations." Advances in Mathematics 377 (January 2021): 107463. http://dx.doi.org/10.1016/j.aim.2020.107463.
Texte intégralZhang, Lihong, and Xiaofeng Nie. "A direct method of moving planes for the Logarithmic Laplacian." Applied Mathematics Letters 118 (August 2021): 107141. http://dx.doi.org/10.1016/j.aml.2021.107141.
Texte intégralChen, Wenxiong, Congming Li, and Yan Li. "A direct method of moving planes for the fractional Laplacian." Advances in Mathematics 308 (February 2017): 404–37. http://dx.doi.org/10.1016/j.aim.2016.11.038.
Texte intégralLin, Chang-Shou, and Juncheng Wei. "Uniqueness of Multiple-spike Solutions via the Method of Moving Planes." Pure and Applied Mathematics Quarterly 3, no. 3 (2007): 689–735. http://dx.doi.org/10.4310/pamq.2007.v3.n3.a3.
Texte intégralGuan, Pengfei, Chang-Shou Lin, and Guofang Wang. "Application of the method of moving planes to conformally invariant equations." Mathematische Zeitschrift 247, no. 1 (2004): 1–19. http://dx.doi.org/10.1007/s00209-003-0608-x.
Texte intégralДудукало, Д., D. Dudukalo, М. Чепчуров, M. Chepchurov, М. Вагнер, and M. Vagner. "METHOD FOR PRODUCING PLANES PARALLEL TO THE AXIS ROTATION AXIS ON LATHES." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, no. 10 (2019): 142–48. http://dx.doi.org/10.34031/article_5db43fa622b135.74427811.
Texte intégralLiu, Xingyu. "The Radial Symmetry and Monotonicity of Solutions of Fractional Parabolic Equations in the Unit Ball." Symmetry 17, no. 5 (2025): 781. https://doi.org/10.3390/sym17050781.
Texte intégralWang, Pengyan, and Pengcheng Niu. "A direct method of moving planes for a fully nonlinear nonlocal system." Communications on Pure & Applied Analysis 16, no. 5 (2017): 1707–18. http://dx.doi.org/10.3934/cpaa.2017082.
Texte intégralYing, Wang. "The Method of Moving Planes for Integral Equation in an Extremal Case." Journal of Partial Differential Equations 29, no. 3 (2016): 246–54. http://dx.doi.org/10.4208/jpde.v29.n3.6.
Texte intégralLiu, Baiyu. "Direct method of moving planes for logarithmic Laplacian system in bounded domains." Discrete & Continuous Dynamical Systems - A 38, no. 10 (2018): 5339–49. http://dx.doi.org/10.3934/dcds.2018235.
Texte intégralShi, Wei. "Liouville-Type Theorem for Nonlinear Elliptic Equations Involving Generalized Greiner Operator." Mathematics 11, no. 1 (2022): 61. http://dx.doi.org/10.3390/math11010061.
Texte intégralMa, Shih-Hsin, Jun-Yi Wu, and Chun-Ming Chiang. "Drawing the Light Paths at a Lens to Find Its Effective Focal Length and Principal Planes." Physics Teacher 60, no. 7 (2022): 591–93. http://dx.doi.org/10.1119/5.0020125.
Texte intégralBendjilali, K., and F. Belkhouche. "Collision course by transformation of coordinates and plane decomposition." Robotica 27, no. 4 (2009): 499–509. http://dx.doi.org/10.1017/s0263574708004888.
Texte intégralLiu, Chi-Min. "Extended Stokes' Problems for Relatively Moving Porous Half-Planes." Mathematical Problems in Engineering 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/185965.
Texte intégralCiraolo, Giulio, and Luigi Vezzoni. "A sharp quantitative version of Alexandrov's theorem via the method of moving planes." Journal of the European Mathematical Society 20, no. 2 (2018): 261–99. http://dx.doi.org/10.4171/jems/766.
Texte intégralFang, Zhongbo, and Anna Wang. "Some Symmetry Results for the A-Laplacian Equation via the Moving Planes Method." Advances in Pure Mathematics 02, no. 06 (2012): 363–66. http://dx.doi.org/10.4236/apm.2012.26053.
Texte intégralPucci, C., and Colesanti Andrea. "A symmetry result for the p-laplacian equation via the moving planes method." Applicable Analysis 55, no. 3-4 (1994): 207–13. http://dx.doi.org/10.1080/00036819408840300.
Texte intégralCheng, Chunxia, Zhongxue Lü, and Yingshu Lü. "A direct method of moving planes for the system of the fractional Laplacian." Pacific Journal of Mathematics 290, no. 2 (2017): 301–20. http://dx.doi.org/10.2140/pjm.2017.290.301.
Texte intégralChen, Chiun-Chuan, and Chang-Shou Lin. "Estimates of the conformal scalar curvature equation via the method of moving planes." Communications on Pure and Applied Mathematics 50, no. 10 (1997): 971–1017. http://dx.doi.org/10.1002/(sici)1097-0312(199710)50:10<971::aid-cpa2>3.0.co;2-d.
Texte intégralLin, Chang-Shou. "Estimates of the scalar curvature equation via the method of moving planes III." Communications on Pure and Applied Mathematics 53, no. 5 (2000): 611–46. http://dx.doi.org/10.1002/(sici)1097-0312(200005)53:5<611::aid-cpa4>3.0.co;2-n.
Texte intégralLiu, Xingyu. "A System of Parabolic Laplacian Equations That Are Interrelated and Radial Symmetry of Solutions." Symmetry 17, no. 7 (2025): 1112. https://doi.org/10.3390/sym17071112.
Texte intégralDeng, Yan, Junfang Zhao, and Baozeng Chu. "Symmetry of positive solutions for systems of fractional Hartree equations." Discrete & Continuous Dynamical Systems - S 14, no. 9 (2021): 3085. http://dx.doi.org/10.3934/dcdss.2021079.
Texte intégralMikyoung Hur, Vera. "Symmetry of steady periodic water waves with vorticity." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, no. 1858 (2007): 2203–14. http://dx.doi.org/10.1098/rsta.2007.2002.
Texte intégralHollifield, Elliott. "Positivity of nonnegative solutions to a system of fractional Laplacian problems in a ball." Proceedings of the American Mathematical Society, Series B 11, no. 44 (2024): 499–507. http://dx.doi.org/10.1090/bproc/240.
Texte intégralDou, Meixia. "A direct method of moving planes for fractional Laplacian equations in the unit ball." Communications on Pure and Applied Analysis 15, no. 5 (2016): 1797–807. http://dx.doi.org/10.3934/cpaa.2016015.
Texte intégralChen, Chiun-Chuan, and Chang-Shou Lin. "Estimate of the conformal scalar curvature equation via the method of moving planes. II." Journal of Differential Geometry 49, no. 1 (1998): 115–78. http://dx.doi.org/10.4310/jdg/1214460938.
Texte intégralChen, Chiun-Chuan, and Ming Di Lee. "On the method of moving planes and symmetry of solutions of semilinear elliptic equations." Nonlinear Analysis: Theory, Methods & Applications 28, no. 10 (1997): 1697–707. http://dx.doi.org/10.1016/0362-546x(95)00240-v.
Texte intégralSalehi, Nahid, and Mankyu Sung. "Realistic Multi-Agent Formation Using Discretionary Group Behavior (DGB)." Applied Sciences 10, no. 10 (2020): 3518. http://dx.doi.org/10.3390/app10103518.
Texte intégralZhang, Tao. "Liouville Type Theorems Involving the Fractional Laplacian on the Upper Half Euclidean Space." Fractal and Fractional 6, no. 12 (2022): 738. http://dx.doi.org/10.3390/fractalfract6120738.
Texte intégralWang, Xin-jing, and Peng-cheng Niu. "A Direct Method of Moving Planes to Fractional Power SubLaplace Equations on the Heisenberg Group." Acta Mathematicae Applicatae Sinica, English Series 37, no. 2 (2021): 364–79. http://dx.doi.org/10.1007/s10255-021-1016-x.
Texte intégralSun, Tao, and Hua Su. "Monotonicity and Symmetry of Solutions to Fractional Laplacian in Strips." Journal of Function Spaces 2021 (November 10, 2021): 1–5. http://dx.doi.org/10.1155/2021/5354775.
Texte intégralParrot, J. F., and C. Ramírez-Núñez. "POSITIVE AND NEGATIVE ROUGHNESS ACCORDING TO LOCAL DIFFERENCES BETWEEN DEM SURFACE AND 3D REFERENCE PLANES." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2021 (June 17, 2021): 159–65. http://dx.doi.org/10.5194/isprs-annals-v-3-2021-159-2021.
Texte intégralDaiji, Yongzhi, Shuibo Huang, and Qiaoyu Tian. "Symmetry and Monotonicity of Solutions to Mixed Local and Nonlocal Weighted Elliptic Equations." Axioms 14, no. 2 (2025): 139. https://doi.org/10.3390/axioms14020139.
Texte intégralYang, Jonghyun, Jeongjun Park, and Changwan Yu. "Accuracy Verification of 3D Motion Analysis System Using Smart-phone Monocular Camera." Korean Journal of Sport Science 32, no. 4 (2021): 464–71. http://dx.doi.org/10.24985/kjss.2021.32.4.464.
Texte intégralPark , Eun-Seok, Saba Arshad, and Tae-Hyoung Park. "Initial Pose Estimation Method for Robust LiDAR-Inertial Calibration and Mapping." Sensors 24, no. 24 (2024): 8199. https://doi.org/10.3390/s24248199.
Texte intégralDai, Wei, Yanqin Fang, and Guolin Qin. "Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes." Journal of Differential Equations 265, no. 5 (2018): 2044–63. http://dx.doi.org/10.1016/j.jde.2018.04.026.
Texte intégral张, 晓亚. "The Method of Moving Planes for Fractional Order Elliptic Equations with Hardy and General Nonlinear Terms." Advances in Applied Mathematics 12, no. 09 (2023): 3804–13. http://dx.doi.org/10.12677/aam.2023.129374.
Texte intégralHou, Wenwen, Lihong Zhang, Ravi P. Agarwal, and Guotao Wang. "Radial symmetry for a generalized nonlinear fractional p-Laplacian problem." Nonlinear Analysis: Modelling and Control 26, no. 2 (2021): 349–62. http://dx.doi.org/10.15388/namc.2021.26.22358.
Texte intégralMOTA, Rafael, Ray KIRBY, Paul WILLIAMS, and Stefan JACOB. "Efficient modeling of atmospheric infrasound propagation with the Semi-Analytical-Finite-Element (SAFE) method." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, no. 9 (2024): 2711–18. http://dx.doi.org/10.3397/in_2024_3223.
Texte intégralTang, Sufang, and Jingbo Dou. "Nonexistence results for a fractional Hénon–Lane–Emden equation on a half-space." International Journal of Mathematics 26, no. 13 (2015): 1550110. http://dx.doi.org/10.1142/s0129167x15501104.
Texte intégralHou, Wenwen, and Lihong Zhang. "Radial symmetry of a relativistic Schrödinger tempered fractional p-Laplacian model with logarithmic nonlinearity." Nonlinear Analysis: Modelling and Control 28 (December 23, 2022): 1–14. http://dx.doi.org/10.15388/namc.2023.28.29621.
Texte intégralZhang, Tao, and Tingzhi Cheng. "A priori estimates of solutions to nonlinear fractional Laplacian equation." Electronic Research Archive 31, no. 2 (2022): 1119–33. http://dx.doi.org/10.3934/era.2023056.
Texte intégralAkmatov, A. "The Regularization Method of Solutions a Bisingularly Perturbed Problem in the Generalized Functions Space." Bulletin of Science and Practice 8, no. 2 (2022): 10–17. http://dx.doi.org/10.33619/2414-2948/75/01.
Texte intégralFELMER, PATRICIO, and YING WANG. "RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN." Communications in Contemporary Mathematics 16, no. 01 (2014): 1350023. http://dx.doi.org/10.1142/s0219199713500235.
Texte intégralShiller, Zvi, and William Serate. "Trajectory Planning of Tracked Vehicles." Journal of Dynamic Systems, Measurement, and Control 117, no. 4 (1995): 619–24. http://dx.doi.org/10.1115/1.2801122.
Texte intégralLe, Phuong, and Hoang-Hung Vo. "Monotonicity and symmetry of positive solutions to degenerate quasilinear elliptic systems in half-spaces and strips." Communications on Pure & Applied Analysis 21, no. 3 (2022): 1027. http://dx.doi.org/10.3934/cpaa.2022008.
Texte intégralKang, Hyeonbae, and Shigeru Sakaguchi. "A symmetry theorem in two-phase heat conductors." Mathematics in Engineering 5, no. 3 (2022): 1–7. http://dx.doi.org/10.3934/mine.2023061.
Texte intégral