Littérature scientifique sur le sujet « Multiplex immunohistochemistry »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multiplex immunohistochemistry ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multiplex immunohistochemistry"
Wistuba, I., E. Parra et A. Francisco Cruz. « MS17.04 Multiplex Immunohistochemistry ». Journal of Thoracic Oncology 14, no 10 (octobre 2019) : S191. http://dx.doi.org/10.1016/j.jtho.2019.08.380.
Texte intégralSheng, Wenjie, Chaoyu Zhang, T. M. Mohiuddin, Marwah Al-Rawe, Felix Zeppernick, Franco H. Falcone, Ivo Meinhold-Heerlein et Ahmad Fawzi Hussain. « Multiplex Immunofluorescence : A Powerful Tool in Cancer Immunotherapy ». International Journal of Molecular Sciences 24, no 4 (4 février 2023) : 3086. http://dx.doi.org/10.3390/ijms24043086.
Texte intégralGannot, Gallya, Michael A. Tangrea, Heidi S. Erickson, Peter A. Pinto, Stephen M. Hewitt, Rodrigo F. Chuaqui, John W. Gillespie et Michael R. Emmert-Buck. « Layered Peptide Array for Multiplex Immunohistochemistry ». Journal of Molecular Diagnostics 9, no 3 (juillet 2007) : 297–304. http://dx.doi.org/10.2353/jmoldx.2007.060143.
Texte intégralMorrison, Larry E., Mark R. Lefever, Lauren J. Behman, Torsten Leibold, Esteban A. Roberts, Uwe B. Horchner et Daniel R. Bauer. « Brightfield multiplex immunohistochemistry with multispectral imaging ». Laboratory Investigation 100, no 8 (27 avril 2020) : 1124–36. http://dx.doi.org/10.1038/s41374-020-0429-0.
Texte intégralForsberg, Peter A., Andrew Hammes, Diana Abbott, Daniel W. Sherbenou, Adriana Rossi, David Jayabalan, Ruben Niesvizky, Tomer M. Mark et Scott Ely. « Cellular proliferation by multiplex immunohistochemistry identifies aggressive disease behavior in relapsed multiple myeloma ». Leukemia & ; Lymphoma 60, no 8 (11 janvier 2019) : 2085–87. http://dx.doi.org/10.1080/10428194.2018.1551537.
Texte intégralBarrow, Emma, D. Gareth Evans, Ray McMahon, James Hill et Richard Byers. « A comparative study of quantitative immunohistochemistry and quantum dot immunohistochemistry for mutation carrier identification in Lynch syndrome ». Journal of Clinical Pathology 64, no 3 (22 décembre 2010) : 208–14. http://dx.doi.org/10.1136/jcp.2010.084418.
Texte intégralHarmsen, Marissa J., Arda Arduç, Maaike C. G. Bleeker, Lynda J. M. Juffermans, Arjan W. Griffioen, Ekaterina S. Jordanova et Judith A. F. Huirne. « Increased Angiogenesis and Lymphangiogenesis in Adenomyosis Visualized by Multiplex Immunohistochemistry ». International Journal of Molecular Sciences 23, no 15 (29 juillet 2022) : 8434. http://dx.doi.org/10.3390/ijms23158434.
Texte intégralOscar, Brück, Sami Blom, Riku Turkki, Panu E. Kovanen, Antonio Ribeiro, Nina Linder, Johan Lundin, Olli Kallioniemi, Teijo Pellinen et Satu Mustjoki. « Immune Cell Profiling in CML Bone Marrow By Multiplex Immunohistochemistry ». Blood 128, no 22 (2 décembre 2016) : 1897. http://dx.doi.org/10.1182/blood.v128.22.1897.1897.
Texte intégralSilverman, Andrew, Matthew Ingham, Robyn Denise Gartrell, Douglas Kanter Marks, Hojung Rachel Park, Thomas D. Hart, Camden L. Esancy et al. « Interrogating the sarcoma immune microenvironment (iME) using multiplex immunohistochemistry (mIHC). » Journal of Clinical Oncology 36, no 15_suppl (20 mai 2018) : 11536. http://dx.doi.org/10.1200/jco.2018.36.15_suppl.11536.
Texte intégralUgolini, Filippo, Elisa Pasqualini, Sara Simi, Gianna Baroni et Daniela Massi. « Bright-Field Multiplex Immunohistochemistry Assay for Tumor Microenvironment Evaluation in Melanoma Tissues ». Cancers 14, no 15 (28 juillet 2022) : 3682. http://dx.doi.org/10.3390/cancers14153682.
Texte intégralThèses sur le sujet "Multiplex immunohistochemistry"
Akarca, Ayse. « Immunohistochemical studies for identification of biomarkers in haematological malignancies : An approach for potential novel therapeutic targets ». Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1127626.
Texte intégralOguejiofor, Kenneth Kenechukwu. « Prognostic markers in oropharyngeal cancers ». Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/prognostic-markers-in-oropharyngeal-cancers(fda96224-657d-4049-ae6c-50db33a5388a).html.
Texte intégralPomeroy, Ian. « Neocortical lesions in an animal model of multiple sclerosis ». Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670186.
Texte intégralPadrão, Ines Liguori. « Adenomas hipofisarios : estudo clinico, morfologico e morfometrico ; busca de fatores de prognostico utilizando o metodo imunoistoquimico ». [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/311565.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-09T15:50:12Z (GMT). No. of bitstreams: 1 Padrao_InesLiguori_D.pdf: 2489921 bytes, checksum: 62e17012ad64cca8cff1b95a7a39190e (MD5) Previous issue date: 2007
Resumo: Adenomas hipofisários (AH) são neoplasias epiteliais geralmente bem diferenciadas e benignas. Manifestam-se clinicamente com sintomas de excesso ou redução hormonal e/ou de massa intracraniana. São classificados conforme aspecto macroscópico/radiológico (macro x microadenomas; invasivos x não invasivos), status funcional (funcionantes x não funcionantes), citológico (acidófilos, basófilos e cromófobos) e imunoistoquímicos/ultraestruturais (somatotropinomas, prolactinomas, orticotropinomas, tireotropinomas, gonadotropinomas e de células nulas). Entre as heterogêneas formas de apresentação, evolução e manifestações clínicas, adenomas invasivos e macroadenomas não invasivos são os que limitam o tratamento cirúrgico, com recidivas determinantes de morbidade endócrina e /ou neurológica. Variantes agressivas e não agressivas podem exibir aspecto histológico semelhante, motivando a investigação imunoistoquímica, genética e de biologia molecular, com o propósito de relacionar mecanismos de tumorigênese com o comportamento biológico desses tumores, como crescimento invasivo e recorrência. Objetivos Classificação e estudo da freqüência dos AH da amostra sob o ponto de vista funcional embasada na sintomatologia clínica; Classificação anatômica/neuroradiológica baseada no tamanho tumoral e grau de invasão, utilizando a gradação de Jules Hardy; Classificação e estudo da freqüência dos subtipos hormonais, utilizando o método imunoistoquímico. Correlacionar dados clínicos, anatômicos, imunoistoquímicos, com o grau de agressividade dos AH, buscando fatores de prognóstico utilizando marcadores de atividade proliferativa (Ki 67), alteração de gene supressor tumoral (p53 e menin), angiogênese (CD 34) e expressão de neuropeptídeo (Galanina). Material e métodos Avaliamos AH de 61 pacientes submetidos à ressecção cirúrgica, sob o ponto de vista clínico, anatômico/neuroradiológico e imunoistoquímico. Utilizamos a técnica imunoistoquímica: para a determinação dos diferentes subtipos hormonais e para o Ki 67 como marcador de proliferação, o p53 e menin como marcadores de supressão tumoral, CD34 para a avaliação da angiogênese e Galanina para avaliar a presença desse neuropeptídeo. Resultados A amostra está constituída por 57 (93,4%) macroadenomas (19 invasivos e 38 não invasivos) e 4 microadenomas não invasivos; a freqüência de invasão foi de 62,3%. Vinte e cinco (41%) AH são clinicamente funcionantes (13 somatotropinomas, 6 prolactinomas , 6 corticotropinomas) e 36 (59%) não funcionantes (32 AH silenciosos e 4 de células nulas). Macroadenomas invasivos não funcionantes predominaram em relação aos macroadenomas invasivos funcionantes (p= 0,014). Houve 54,09% de recidiva. A imunoistoquímica revelou expressão positiva para hormônio do crescimento (GH) em 18 AH, 10 AH expressaram prolactina (PRL), 12 positivos para corticotropina (ACTH), 17 para gonadotrofinas e 4 AH negativos para todos os hormônios. A sintomatologia endócrina incidiu em 42,62% dos casos e os sintomas neurológicos em 88%. Homens e mulheres foram igualmente afetados e a maioria dos AH estão distribuídos nas quarta e quinta décadas de vida. O Ki 67 foi positivo em 83,69% do total da amostra e a média desse índice foi 4,39% (variação de 0 ¿ 36,9%); entre os subtipos hormonais os AH com expressão positiva para GH, mono ou pluri-hormonais, apresentaram índice de proliferação significativamente maior em relação aos demais subtipos (p=0,001). Os macroadenomas funcionantes invasivos apresentaram maior índice de proliferação em relação aos macroadenomas não funcionantes invasivos (p = 0,0328). O p53 foi positivo em 60,65% do total da amostra e a média do índice de núcleos corados foi 1,23% (variação de 0 ¿ 16%). Não houve diferença significativa da expressão do p53 quanto à invasão, fenótipo hormonal, status funcional e recidiva, entretanto houve correlação positiva entre o índice de proliferação e o p53 (p = 0,0004). Quanto à angiogênese, o CD34 mostrou que a densidade microvascular (DMV) em AH é menor em relação ao tecido adeno-hipofisário normal. A Galanina (GAL) foi positiva em 57% dos casos; os AH negativos para a GAL apresentaram índices de DMV significativamente maior em relação aos GAL positivos (p = 0,0464). A imunoreação para menin foi positiva em 41 AH (67,21%), e negativa em 20 AH (32,7%). A grande variedade de expressão de menin, tanto na intensidade da coloração quanto na localização nuclear ou citoplasmática, dificultou a interpretação dos resultados, sendo necessários estudos genéticos comparativos que possam orientar essa interpretação dos dados obtidos. Conclusões A maior freqüência de AH não funcionantes desta amostra pode estar relacionada ao diagnóstico tardio. A expressão do Ki 67 não se associou à gradação de Hardy. Os macroadenomas funcionantes e invasivos apresentaram índice de proliferação maior do que os não funcionantes, podendo indicar comportamento mais agressivo. Entre os diferentes subgrupos de AH apenas os que expressaram positividade para GH apresentaram índice de proliferação significativamente maior. A invasão nos AH = 10 mm, que apresentaram índice de proliferação igual a zero, não é dependente da atividade proliferativa. A maior expressão do p53 se correlacionou com o maior índice de proliferação (Ki 67) nesta amostra. O p53, a DMV e GAL não são marcadores de prognóstico nos AH. Os índices mais elevados da DMV em AH com ausência de expressão da GAL, podem indicar comportamento biológico mais agressivo
Abstract: Pituitary Adenomas (PA) are an easily identifiable and benign epithelial neoplasia. They are clinically detected through symptoms of an increased or decreased hormone rate and/or alterations of intra-cranial mass. They are classed in accordance with radiological / macroscopical aspects (macro versus microadenoma / invasive versus non-invasive), functional status (functional versus non-functional), cytological (acidophil, basophilic and chromophobic) and immunohistochemical / ultra-structural (somatotrophinomas, prolactinomas, corticotrophinomas, thyrotrophinomas, gonadotrophinomas and those from null cells). Amongst their various forms of disclosure, evolution, and clinical manifestation, invasive adenomas and non-invasive macroadenomas impose limits to surgical procedures, resulting in recidivist determination of endocrine and / or neurological morbidity. Aggressive and non-aggressive variants may display similar histological aspects, which require immunohistochemical, genetic and molecular-biological investigation, attempting to relate tumorigenesis mechanisms to the biological behavior of these tumors, such as invasive growth and recurrence. Objectives Classification and study of the occurrence of the sampled PA under a functional viewpoint based upon clinical symptomatology; Neuro-radiological / anatomic classification based upon tumor size and invasive rate through the Jules Hardy labeling index; Analysis and classification of the occurrence of hormonal subtypes, through the immunohistochemical method; Co-relate clinical, anatomical, and immunohistochemical data with the aggressivity of the PA, seeking prognostic factors using proliferous activity markers (Ki 67), suppressive tumorous gene alteration (p53 and menin), angiogenesis (CD 34) and neuropeptide (galanin). Materials and Methods 61 PA patients who had undergone surgical re-section were studied: clinical, anatomical / neurological, and immunohistochemical aspects were considered. The immunohistochemical technique was used to determine the different hormonal subtypes, and for the Ki 67 as a proliferation marker, the p53 and menin as a tumor suppression marker, CD34 for the assessment of the agiogenesis, and galanin to observe the presence of this neuropeptide. Results The sample contains 57 (93.4% macro-adenomas (19 invasive and 38 non-invasive) and 4 non-invasive microadenomas; the invasion rate equaled 62.3%. Twenty-five (41%) PA are clinically functional (13 somatotrophinomas, 6 prolactinomas, 6 corticotrophinomas) and 36 (59%) non-functional (32 PA silenced and 4 null cells). Invasive, non-functional macroadenomas stood out when compared to invasive, functional macroadenomas (p=0.014). 54.09% recidivists were detected. Immunohistochemistry revealed positive expression of the growth hormone (GH) in 18 PA, 10 PA expressed prolactin (PRL), 12 showed positive for corticotrophin (ACTH), 17 for gonadotrophin, and 4 PA showed negative for all hormones. Endocrine symptomatology occurred in 42.62% of the cases, and neurological symptoms were present in 88%. Male and female patients were affected indistinctly, and most PA patients were in their 40s and 50s. Ki 67 was positive in 83.69% of the total sampled, rating at an average of 4.39% (varying from 0 ¿ 36.9%); amongst hormonal subtypes, PA showing positive expression of GH (mono or plurihormonal) had a significantly increased proliferative activity when compared to other subtypes (p=0.001). Invasive, functional macroadenomas showed a higher proliferation rate than invasive, non-functional macroadenomas (p=0.0328). p53 was positive in 60.65% of the total sampled, and the average rate of dyed nuclei equaled 1.23% (varying from 0 ¿ 16%). There was no meaningful change in the expression of p53 as to the invasion, hormonal phenotype, functional and recidivist status. However, a positive co-relation between the proliferation rate and the p53 was detected (p=0.0004). Concerning the angiogenesis, CD34 showed that the microvascular density (MVD) in PA is lower when compared to the healthy adenohypophysial tissue. Galanin (GAL) was positive in 57% of the cases. The PA negative for GAL showed significantly increased MVD rates than the GAL positive (p=0.0464). Immunoreaction for menin was positive in 41 PA (67.21%) and negative in 20 PA (32.7%). The large variety of menin expression, regarding chromatic intensity and cytoplasmic or nuclear location made the interpretation of the results more difficult, which required comparative genetic studies that could guide the understanding of the data obtained. Conclusions Higher rates of non-functional PA cases may be a result of late diagnosis. Ki 67 expression could not be linked to the Hardy index. Invasive, functional macro-adenomas showed a higher proliferation rate than the rate obtained from the non-functional types ¿ which may signal increased aggressivity. Amongst the various PA subgroups, only those with GH positive expression had a significantly higher proliferation rate. The invasion of PA =10 mm, whose proliferation rate was null, is not dependent on proliferative activity. In this sample, the largest p53 expression matched the highest proliferation rate (Ki 67). p53, MVD and GAL are not PA prognostic markers. The highest MVD rates among PA combined with a null GAL expression may indicate more aggressive biological behavior
Doutorado
Ciencias Biomedicas
Mestre em Ciências Médicas
Jorge, Uana Maria Miguel. « Tumores gástricos primários múltiplos e únicos : análise imunohistoquímica comparativa ». Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/5/5154/tde-29012007-154954/.
Texte intégralIntroduction: Multiple primary gastric adenocarcinomas (MPGA) have been reported from 3.5% to 10% of all patients with gastric cancer. Tumoral multiplicity is largely known as an indicator of genetic predisposition for the development of neoplasias. Moreover, the route of carcinogenesis has not been clearly clarified in these tumors (mutator pathway or suppressor pathway). Aim: to evaluate the immunoexpression of hMLH1, hMSH2, and hMSH6 (mutator pathway), p53 (suppressor pathway) and E-cadherin in the MPGA, comparing to solitary adenocarcinomas (similar gender, age, histological type, location and staging) and also the relation to the clinicopathological data.: Casuistics: Nineteen patients (Group 1) with MPGA were compared to 21 patients (Group 2) with solitary gastric tumors regarding clinicopathological characteristics and immunohistochemistry. Methods: Blocks of tissue fixed in 10% formalin and embedded in parafin were submitted to 4 mm sections for histological and immunohistochemistry analysis for hMLH1, hMSH2 and hMSH6 (mutator pathway), p53 (suppressor pathway) and E-cadherin. Results: The mean age for the MPGA was 66.8 + 9.06 years, and 59.0 + 16.9 years for the solitary tumor group(P = 0.27). Twenty-two tumors were in the distal stomach, 14 were in the body and five in the proximal portion. In 14 patients the lesions were close to each other (< 3 cm), while in five patients the neoplasias were distant, in another portion of the stomach.The final postoperative pathological stage was: T1 in 15 (eight multiple and seven solitary), T2 in seven (one multiple and six soliatry), T3 in 17 ( nine multiple and eight solitary) and T4 in one ( one multiple). According to the Laurén classification, 45 tumors were intestinal type (29 multiple and 16 solitary), 16 were diffuse (12 multiple and four solitart) and one mixed type ( one solitary). 30 tumors were diagnosed in advanced staging (16 multiple and 14 soliatry) and 32 were early (25 multiple and seven solitary). There was no difference between the hMLH1 immunoexpression in the two groups (24.3% vs. 19%, P=0.64), hMSH6 (4.8% vs. 2.4%, P=0.68), p53 (39% vs. 24%, P=0.35) and E-cadherin (27% v.s 19%, P=0.46). Immunostaining for hMSH2 was positive in all MPGA, indicating absence of alterations of this repair gene marker. There was no association between the immunomarkers and the clinicopathological data. Conclusions: 1. Routes of carcinogenesis, mutator, suppressor, and E-cadherin appear to be involved independently in the development of MPGA; 2. There was no difference in the markers immunoexpression in the two groups.
Costa, Marcia Helena Soares. « Estudo da expressão dos receptores do peptídeo insulinotrópico dependente de glicose (GIPR) e do hormônio luteinizante (LHCGR) em tumores e hiperplasias do córtex adrenal ». Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/5/5135/tde-11092007-134837/.
Texte intégralIntroduction: The glucose- dependent insulinotropic peptide receptor (GIPR) and luteinizing hormone receptor (LHCGR) are G-protein coupled receptors with a wide tissue expression pattern. The aberrant expression of these receptors has been described in cases of ACTH-independent macronodular adrenal hyperplasia (AIMAH) and in some adenomas, resulting in the increase of adrenal cortex hormonal secretion (cortisol, androgens and aldosterone). The role of these receptors in other forms of adrenocortical hyperplasia, such as primary pigmented nodular adrenocortical disease (PPNAD), adrenal enlargement associated with multiple endocrine neoplasia type 1 (MEN1), and adrenocortical carcinoma has been scarcely investigated. Thus, the study of the expression of these receptors in patients with sporadical adrenocortical tumors, AIMAH, PPNAD and adrenal enlargement associated to MEN1 was considered important. Objectives: 1) Molecular study in patients with multiple endocrine neoplasia type 1 and PPNAD: mutation screening of MEN1 and PRKAR1A genes and analysis of the loss of heterozygosis (LOH) of these genes in the adrenal lesions of these patients. 2) To quantify the GIPR and LHCGR expression, in normal, tumor and hyperplasic tissue and to correlate the expression of these receptors with the adrenocortical tumor histology. Patients: 55 patients (30 adults) with adrenocortical tumors (37 adenomas and 18 carcinomas); 7 patients with AIMAH, 4 with MEN1, 1 with PPNAD and control tissue (adrenal, testis and pancreas). Methods: Extraction of genomic DNA, RNA and synthesis of complementary DNA (cDNA); PCR-amplification of the coding regions of MEN1 and PRKAR1A, followed by direct sequencing. LOH study using polymorphic marker amplification by PCR and GeneScan software analysis. Quantification of GIPR and LHCGR expression using realtime PCR -TaqMan method and GIPR immunohistochemistry study in adrenocortical tumors. Results: Identification of 3 mutations (893+ 1G>A, W183X and A68fsX118) and two polymorphic alterations (S145S and D418D) in MEN1 and a mutation (Y21X) in the PRKAR1A gene; LOH was not identified in adrenal tissue. The GIPR and LHCGR expression was identified in normal, tumor and hyperplasic adrenal tissues; the GIPR expression level was more elevated in malignant tumors compared to benign tumors in pediatric (median = 18.1 and 4.6, respectively; p <0.05) and adult patients (median = 4.8 and 1.3 respectively; p <0.001). The LHCGR expression in pediatric patients was elevated in benign as well as in malignant tumors (median = 6.4 and 4.3, respectively). In the adult group, the expression level of these receptors was extremely low in malignant tumors in relation to benign ones (median = 0.06 and 2.3, respectively; p <0.001). The GIPR immunohistochemistry was variable and did not correlate with GIPR gene expression. No difference between GIPR and LHCGR expression levels was observed in the different forms of hyperplasia. Conclusions: The presence of LOH and mutations in compound heterozygosis of MEN1 and PRKAR1A genes were ruled out as the mechanisms responsible for the adrenal enlargement in patients with multiple endocrine neoplasia type 1. GIPR overexpression is associated with malignant adrenocortical tumors in the adult and pediatric patients and low LHCGR expression is associated with malignant adrenocortical tumors only in the adult patients.
Sekiya, Tomoko. « Análise do gene CDKN1B/p27kip1 em pacientes com neoplasia endócrina múltipla tipo 2 ». Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/5/5135/tde-26022014-112355/.
Texte intégralINTRODUCTION: In Multiple Endocrine Neoplasia type 2 (MEN2) the development of medullary thyroid carcinoma (MTC), pheochromocytoma (PHEO) and primary hyperparathyroidism (HPT) are associated with activating germline mutations in RET proto-oncogene. Cases of sporadic MTC may have somatic RET mutations (~ 40%). The phenotypic variability observed in cases with familial MTC/MEN2 and PHEO/MEN2 indicates the probable involvement of additional genetic events that could be responsible for the clinical differences observed in the affected individuals (age development, progression and aggressiveness of the tumor). Other genetic alterations such as RET double mutations, SNPs and specific haplotypes may influence susceptibility, aggressiveness and MEN2 phenotype modulation. However, studies of other genes involved in the tumorigenesis of MEN2 are still in progress. Recently, it was shown that the activated RET controls the expression of cell cycle inhibitory proteins (p18 and p27). Germline mutations in the p27 gene have recently been associated with the susceptibility to neuroendocrine tumors and are associated with the MEN4 syndrome (Multiple endocrine neoplasia type 4). Somatic inactivating mutations p27 are rarely found in many types of tumors. However, several studies have documented that reduced expression and subcellular location of p27 is controlled by post-transductional changes and/or epigenetic factors. OBJECTIVES: This study aimed to evaluate the role of genes recently associated with RET activated in tumors from MEN2 patients and also check whether polymorphisms in the p27 gene would be acting as modulators of phenotype in a large MEN2 family. PATIENTS: We analyzed 66 tumor samples from 36 patients with clinical and genetic diagnosis of MEN2 and from 28 individuals belonging to a large family with FMTC/MEN2A and RET C620R mutation. METHODS: The analyses of somatic p27, p15, p18 and RET were performed by PCR and direct sequencing of DNA and microsatellite analysis was performed for p27 by PCR and capillary electrophoresis. Expression analysis and subcellular localization of p27 protein were performed by Western blot and immunohistochemistry. The analysis of phenotype modulation in MEN2A families was performed by the amplification of exon 1 of the p27 gene in a whole blood sample. RESULTS: There were no somatic mutations in the p27 gene and also in the p15 and p18 genes. However, we verified a low p27 protein expression in MTC/MEN2 and PHEO/MEN2 that showed a definite correlation with the type and aggressiveness of the mutated RET codon, mainly in those tumors from cases with germline RET codon 634 mutations (control vs 634, p=0,05; control vs 634/791, p= 0,032; 620 vs 634, p=0,045; 620 vs 634/791, p= 0,002; 620 vs 634 + 634/791, p=0,036). It was also verified a positive correlation between the immunohistochemistry expression of nuclear p27 subcellular location and the p27 p.V109G TT genotype (p=0,03). CONCLUSIONS: The reduction in the expression of p27 and its subcellular localization are likely to be associated with somatic changes in other genes that control the processes of phosphorylation of p27 protein through post-transductional events
Livres sur le sujet "Multiplex immunohistochemistry"
C. M. van der Loos. Immunoenzyme multiple staining methods. Oxford, UK : Bios Scientific Publishers in association with the Royal Microscopical Society, 1999.
Trouver le texte intégralImmunoenzyme multiple staining methods. Oxford, UK : Bios Scientific Publishers, 1999.
Trouver le texte intégralYeong, Joe, Bernard A. Fox, Houssein A. Sater, Jaime A. Rodriguez-Canales et Trevor David McKee, dir. Multiplex Immunohistochemistry/Immunofluorescence Technique : The Potential and Promise for Clinical Application. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-718-4.
Texte intégralL, CHRIS VAN DER. Immunoenzyme Multiple Staining Methods. Garland Science, 1999.
Trouver le texte intégralChapitres de livres sur le sujet "Multiplex immunohistochemistry"
Kalra, Jessica, et Jennifer Baker. « Multiplex Immunohistochemistry for Mapping the Tumor Microenvironment ». Dans Methods in Molecular Biology, 237–51. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6759-9_17.
Texte intégralNguyen, Thu, Nikolce Kocovski, Sean Macdonald, Han Xian Aw Yeang, Minyu Wang et Paul J. Neeson. « Multiplex Immunohistochemistry Analysis of Melanoma Tumor-Infiltrating Lymphocytes ». Dans Methods in Molecular Biology, 557–72. New York, NY : Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1205-7_39.
Texte intégralKang, Wenfei, Anthony Santella, Eric Rosiek, Maria Pulina, Eric Chan, Ning Fan, Murray J. Tipping, Afsar Barlas, Yevgeniy Romin et Katia Manova-Todorova. « Multiplex Spatial Protein Detection by Combining Immunofluorescence with Immunohistochemistry ». Dans Methods in Molecular Biology, 233–44. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2811-9_15.
Texte intégralSteele, Keith E., et Charles Brown. « Multiplex Immunohistochemistry for Image Analysis of Tertiary Lymphoid Structures in Cancer ». Dans Tertiary Lymphoid Structures, 87–98. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8709-2_6.
Texte intégralPang, Lokman, Matthias Ernst et Jennifer Huynh. « Spatially Characterizing the Immune Contexture in Mouse Tissue Using Multiplex Immunohistochemistry ». Dans Methods in Molecular Biology, 307–16. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2811-9_20.
Texte intégralHagos, Yeman Brhane, Priya Lakshmi Narayanan, Ayse U. Akarca, Teresa Marafioti et Yinyin Yuan. « ConCORDe-Net : Cell Count Regularized Convolutional Neural Network for Cell Detection in Multiplex Immunohistochemistry Images ». Dans Lecture Notes in Computer Science, 667–75. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32239-7_74.
Texte intégralvan Diest, Paul J., C. B. Moelans, D. Purnomosari, G. Pals et R. A. de Weger. « Invasive Breast Cancer : Overexpression of HER-2 Determined by Immunohistochemistry and Multiplex Ligation-Dependent Probe Amplification ». Dans Methods of Cancer Diagnosis, Therapy and Prognosis, 291–304. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8369-3_22.
Texte intégralMuñoz-Castro, Clara, Ayush Noori, Bradley T. Hyman et Alberto Serrano-Pozo. « Cyclic Multiplex Fluorescent Immunohistochemistry Protocol to Phenotype Glial Cells in Formalin-Fixed Paraffin-Embedded Human Brain Sections ». Dans Methods in Molecular Biology, 283–305. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2811-9_19.
Texte intégralBuchwalow, Igor B., et Werner Böcker. « Multiple Immunofluorescence Staining ». Dans Immunohistochemistry : Basics and Methods, 69–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04609-4_8.
Texte intégralBuchwalow, Igor B., et Werner Böcker. « Multiple Multicolor Immunoenzyme Staining ». Dans Immunohistochemistry : Basics and Methods, 61–67. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04609-4_7.
Texte intégralActes de conférences sur le sujet "Multiplex immunohistochemistry"
Bauer, Daniel R., Mark Lefever, Torsten Leibold, Lauren Behman, Esteban Roberts, Julia Ashworth-Sharpe et Larry Morrison. « Abstract 4250 : Multispectral imaging of brightfield multiplex immunohistochemistry ». Dans Proceedings : AACR Annual Meeting 2020 ; April 27-28, 2020 and June 22-24, 2020 ; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4250.
Texte intégralLorsakul, Auranuch N., Joerg Bredno, Robert L. Ochs, Larry Morrison et William Day. « Validation of multiplex immunohistochemistry assays using automated image analysis ». Dans Digital Pathology, sous la direction de Metin N. Gurcan et John E. Tomaszewski. SPIE, 2018. http://dx.doi.org/10.1117/12.2293168.
Texte intégralzheng, Yi, Carla Coltharp, Ryan Dilworth, Linying Liu, Darryn Unfricht, Cliff Hoyt, Milind Rajopadhye et Peter Miller. « Abstract 3832 : Optimization strategy for fluorescent multiplex immunohistochemistry tissue staining ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3832.
Texte intégralSobhani, Faranak, Azam Hamidinekoo, Allison H. Hall, Lorraine King, Jeffrey R. Marks, Carlo Maley, Hugo M. Horlings, E. Shelley Hwang et Yinyin Yuan. « Automated Dcis Identification From Multiplex Immunohistochemistry Using Generative Adversarial Networks ». Dans 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). IEEE, 2022. http://dx.doi.org/10.1109/isbi52829.2022.9761413.
Texte intégralSobhani, Faranak, Azam Hamidinekoo, Allison H. Hall, Lorraine King, Jeffrey R. Marks, Carlo Maley, Hugo M. Horlings, E. Shelley Hwang et Yinyin Yuan. « Automated Dcis Identification From Multiplex Immunohistochemistry Using Generative Adversarial Networks ». Dans 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). IEEE, 2022. http://dx.doi.org/10.1109/isbi52829.2022.9761413.
Texte intégralCooper, Lee A. D., Rami Yacoub, David A. Gutman, Fusheng Wang, Carlos S. Moreno, Daniel J. Brat, Roberd M. Bostick et Joel H. Saltz. « Abstract LB-101 : Quantitative imaging of protein expression using multiplex quantum dot immunohistochemistry ». Dans Proceedings : AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012 ; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-101.
Texte intégralChachi, Latifa, Joao Sousa, Chris Brightling et Yassine Amrani. « Multiplex immunohistochemistry to investigate inflammatory cell spatial organisation and interactions in severe asthma ». Dans ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.2297.
Texte intégralDauffenbach, Lisa M., Christopher A. Kerfoot, Gela Sia, Anthony Masci, Johannes Zimmermann, Jan Lesniak, Alexei Budco et al. « Abstract B069 : Characterization of inflammatory cell patterns and densities using multiplex immunohistochemistry immuno-oncology assays ». Dans Abstracts : AACR-NCI-EORTC International Conference : Molecular Targets and Cancer Therapeutics ; October 26-30, 2017 ; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-b069.
Texte intégralVargas, Joseph, David Tacha, Sara Figueroa et Cristin Douglas. « Abstract 3860 : Rodent multispecies multiplex immunohistochemistry using digoxigenin and polymer detection methods in mouse tissues ». Dans Proceedings : AACR Annual Meeting 2018 ; April 14-18, 2018 ; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3860.
Texte intégralZiello, Jennifer, Sarah Klein et Katherine Crosby. « Abstract B33 : Coexpression and frequency of immune checkpoint proteins in the tumor microenvironment analyzed via multiplex immunohistochemistry ». Dans Abstracts : AACR Special Conference on Tumor Immunology and Immunotherapy ; October 1-4, 2017 ; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-b33.
Texte intégralRapports d'organisations sur le sujet "Multiplex immunohistochemistry"
Fields, Michael J., Mordechai Shemesh et Anna-Riitta Fuchs. Significance of Oxytocin and Oxytocin Receptors in Bovine Pregnancy. United States Department of Agriculture, août 1994. http://dx.doi.org/10.32747/1994.7568790.bard.
Texte intégral