Littérature scientifique sur le sujet « Multispectral »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multispectral ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multispectral"
Sun, Mingyue, Qian Li, Xuzi Jiang, Tiantian Ye, Xinju Li et Beibei Niu. « Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery ». Sensors 22, no 11 (25 mai 2022) : 3990. http://dx.doi.org/10.3390/s22113990.
Texte intégralMansfield, J. R. « Multispectral Imaging ». Veterinary Pathology 51, no 1 (15 octobre 2013) : 185–210. http://dx.doi.org/10.1177/0300985813506918.
Texte intégralLi, Fangyu, Jie Qi, Bin Lyu et Kurt J. Marfurt. « Multispectral coherence ». Interpretation 6, no 1 (1 février 2018) : T61—T69. http://dx.doi.org/10.1190/int-2017-0112.1.
Texte intégralJiang, Xiaohua, Xiaoxiao Zhang, Ming Liu et Jie Tian. « Joint Panchromatic and Multispectral Geometric Calibration Method for the DS-1 Satellite ». Remote Sensing 16, no 2 (22 janvier 2024) : 433. http://dx.doi.org/10.3390/rs16020433.
Texte intégralAbdolahpoor, Asma, et Peyman Kabiri. « New texture-based pansharpening method using wavelet packet transform and PCA ». International Journal of Wavelets, Multiresolution and Information Processing 18, no 04 (7 mai 2020) : 2050025. http://dx.doi.org/10.1142/s0219691320500253.
Texte intégralZhou, L., et W. S. El-Deiry. « Multispectral Fluorescence Imaging ». Journal of Nuclear Medicine 50, no 10 (16 septembre 2009) : 1563–66. http://dx.doi.org/10.2967/jnumed.109.063925.
Texte intégralGrant, J., I. J. H. McCrindle, C. Li et D. R. S. Cumming. « Multispectral metamaterial absorber ». Optics Letters 39, no 5 (24 février 2014) : 1227. http://dx.doi.org/10.1364/ol.39.001227.
Texte intégralJia, Jie, Chuan Ni, Andrew Sarangan et Keigo Hirakawa. « Fourier multispectral imaging ». Optics Express 23, no 17 (19 août 2015) : 22649. http://dx.doi.org/10.1364/oe.23.022649.
Texte intégralArmin, Fahimeh, et Hamid Keshmiri. « Multispectral plasmonic supercells ». Journal of Optics 20, no 7 (20 juin 2018) : 075003. http://dx.doi.org/10.1088/2040-8986/aaca0c.
Texte intégralMouats, Tarek, Nabil Aouf, Angel Domingo Sappa, Cristhian Aguilera et Ricardo Toledo. « Multispectral Stereo Odometry ». IEEE Transactions on Intelligent Transportation Systems 16, no 3 (juin 2015) : 1210–24. http://dx.doi.org/10.1109/tits.2014.2354731.
Texte intégralThèses sur le sujet "Multispectral"
Khan, Haris Ahmad. « Multispectral constancy for illuminant invariant representation of multispectral images ». Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK028/document.
Texte intégralA conventional color imaging system provides high resolution spatial information and low resolution spectral data. In contrast, a multispectral imaging system is able to provide both the spectral and spatial information of a scene in high resolution. A multispectral imaging system is complex and it is not easy to use it as a hand held device for acquisition of data in uncontrolled conditions. The use of multispectral imaging for computer vision applications has started recently but is not very efficient due to these limitations. Therefore, most of the computer vision systems still rely on traditional color imaging and the potential of multispectral imaging for these applications has yet to be explored.With the advancement in sensor technology, hand held multispectral imaging systems are coming in market. One such example is the snapshot multispectral filter array camera. So far, data acquisition from multispectral imaging systems require specific imaging conditions and their use is limited to a few applications including remote sensing and indoor systems. Knowledge of scene illumination during multispectral image acquisition is one of the important conditions. In color imaging, computational color constancy deals with this condition while the lack of such a framework for multispectral imaging is one of the major limitation in enabling the use of multispectral cameras in uncontrolled imaging environments.In this work, we extend some methods of computational color imaging and apply them to the multispectral imaging systems. A major advantage of color imaging is the ability of providing consistent color of objects and surfaces across varying imaging conditions. In this work, we extend the concept of color constancy and white balancing from color to multispectral images, and introduce the term multispectral constancy.The validity of proposed framework for consistent representation of multispectral images is demonstrated through spectral reconstruction of material surfaces from the acquired images. We have also presented a new hyperspectral reflectance images dataset in this work. The framework of multispectral constancy will make it one step closer for the use of multispectral imaging in computer vision applications, where the spectral information, as well as the spatial information of a surface will be able to provide distinctive useful features for material identification and classification tasks
Adams, Andrew J. « Multispectral persistent surveillance / ». Online version of thesis, 2008. http://hdl.handle.net/1850/7070.
Texte intégralWahham, Atheer. « Multispectral Image Acquisition ». Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97053.
Texte intégralJia, Jie. « Fourier Multispectral Imaging ». University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1494159492377494.
Texte intégralIsoz, Wilhelm. « Calibration of Multispectral Sensors ». Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5202.
Texte intégralThis thesis describes and evaluates a number of approaches and algorithms for nonuniform correction (NUC) and suppression of fixed pattern noise in a image sequence. The main task for this thesis work was to create a general NUC for infrared focal plane arrays. To create a radiometrically correct NUC, reference based methods using polynomial approximation are used instead of the more common scene based methods which creates a cosmetic NUC.
The pixels that can not be adjusted to give a correct value for the incomming radiation are defined as dead. Four separate methods of identifying dead pixels are used to find these pixels. Both the scene sequence and calibration data are used in these identifying methods.
The algorithms and methods have all been tested by using real image sequences. A graphical user interface using the presented algorithms has been created in Matlab to simplify the correction of image sequences. An implementation to convert the corrected values from the images to radiance and temperature is also performed.
Unsalan, Cem. « Multispectral satellite image understanding ». The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1061903845.
Texte intégralÜnsalan, Cem. « Multispectral satellite image understanding ». Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5num=osu1061903845.
Texte intégralTitle from first page of PDF file. Document formatted into pages; contains xix, 235 p. : ill. (some col.). Advisor: Kim L. Boyer, Department of Electrical Engineering. Includes bibliographical references (p. 216-235).
Vivone, Gemine. « Multispectral and hyperspectral pansharpening ». Doctoral thesis, Universita degli studi di Salerno, 2014. http://hdl.handle.net/10556/1604.
Texte intégralRemote sensing consists in measuring some characteristics of an object from a distance. A key example of remote sensing is the Earth observation from sensors mounted on satellites that is a crucial aspect of space programs. The first satellite used for Earth observation was Explorer VII. It has been followed by thousands of satellites, many of which are still working. Due to the availability of a large number of different sensors and the subsequent huge amount of data collected, the idea of obtaining improved products by means of fusion algorithms is becoming more intriguing. Data fusion is often exploited for indicating the process of integrating multiple data and knowledge related to the same real-world scene into a consistent, accurate, and useful representation. This term is very generic and it includes different levels of fusion. This dissertation is focused on the low level data fusion, which consists in combining several sources of raw data. In this field, one of the most relevant scientific application is surely the Pansharpening. Pansharpening refers to the fusion of a panchromatic image (a single band that covers the visible and near infrared spectrum) and a multispectral/hyperspectral image (tens/hundreds bands) acquired on the same area. [edited by author]
XII ciclo n.s.
Von, chong echevers Alejandro. « Nouvelle approche pour l'estimation de la saturation en oxygène du sang artériel en utilisant un capteur multispectrale ». Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1023.
Texte intégralThis manuscript presents the work done to develop an alternative system for the estimation of the oxygen saturation of blood, also known as pulse oximeter. It is an essential tool, especially in the medical field, for patient monitoring during anesthesia procedures, post-operative care and emergencies, since it provides information related to the respiratory efficiency and heart rate. The principle of operation of the latter is based in the difference in optical absorption between oxygenated blood and deoxygenated blood using a simple photodiode as the sensor. In this research work, we introduce a new method based on the difference between the absorption spectrum between oxygenated blood and deoxygenated blood using a multispectral photodetector.In the first place, an introduction and analysis of the state of the art are made to better understand the theory behind pulse oximetry and highlight the limitations of current methods, which will allow us to position ourselves scientifically and technologically, for our contribution. Then, a detailed explanation of the designed system, concerning the electronics, the acquisition and signal processing is described.Finally, we present the results obtained with our proposed method. First, a proof of concept at several wavelengths was made with a spectrometer as a means of detection to validate the principle of operation. To accomplish deoxygenation, breath holding tests were carried out in conjunction with a high-end oximeter as a means of comparison. Once the principle was validated, we replaced the spectrometer with a multispectral sensor. We found that the estimates made with our method, under stable state conditions, fell within the tolerance allowed by the ISO standard regulating pulse oximeters.Since this is a new principle, we consider that with this work, we open an additional path to the study of pulse oximetry which might allow to overcome several limitations present in the conventional technique. Future clinical trials will explore the usefulness of this method and its limitations
Nyström, Daniel. « Multispectral Color Reproduction Using DLP ». Thesis, Linköping University, Department of Science and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1291.
Texte intégralThe color gamut, i.e. the range of reproducible colors, is in most conventional display systems not sufficient for accurate color reproduction of highly saturated colors. Any conventional three-primary display suffers from a color gamut limited within the triangle spanned by the primary colors. Even by using purer primaries, enlarging the triangle, there will still be a problem to cover all the perceivable colors. By using a system with more than three primary colors, in printing denoted Hi-Fi color, the gamut will be expanded into a polygon, yielding a larger gamut and better color reproduction.
Digital Light Processing (DLP) is a projection technology developed by Texas Instrument. It uses a chip with an array of thousands of individually controllable micromirrors, each representing a single pixel in the projected image. A lamp illuminates the micromirrors, and by controlling the amount of time each mirror reflect the light, using pulse width modulation, the projected image is created. Color reproduction is achieved by letting the light pass through color filters, corresponding to the three primaries, mounted in a filter wheel.
In this diploma work, the DLP projector InFocus® LP™350 has been evaluated, using the Photo Research® PR®-705 Spectroradiometer. The colorimetric performance of the projector is found to be surprisingly poor, with a color gamut noticeably smaller then that of a CRT monitor using standardized phosphors. This is due to the broad banded filters used, yielding increased brightness at the expense of the pureness of the primaries.
With the intention of evaluating the potential for the DLP technology in multi- primary systems, color filters are selected for additional primary colors. The filters are selected from a set of commercially available filters, the Kodak Wratten filters for science and technology. Used as performance criteria for filter selection is the volume of the gamut in the CIE 1976 (L*u*v*) uniform color space.
The selected filters are measured and evaluated in combination with the projector, verifying the theoretical results from the filter selection process. Colorimetric performance of the system is greatly improved, yielding an expansion of the color gamut in CIE 1976 (L*u*v*) color space by 79%, relative the original three-primary system. These results indicate the potential for DLP in multiprimary display systems, with the capacity to greatly expand the color gamut, by using carefully selected filters for additional primary colors.
Livres sur le sujet "Multispectral"
Zhang, David, Zhenhua Guo et Yazhuo Gong. Multispectral Biometrics. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22485-5.
Texte intégralÜnsalan, Cem, et Kim L. Boyer. Multispectral Satellite Image Understanding. London : Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-667-2.
Texte intégralF, Belokon William, Spectral Imagery Training Center (Logicon Geodynamics) et Logicon Geodynamics Inc, dir. Multispectral imagery reference guide. Fairfax, VA : LOGICON Geodynamics, 1997.
Trouver le texte intégralHe, Xin, Paul Beckett et Ranjith R. Unnithan. Multispectral Image Sensors Using Metasurfaces. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7515-7.
Texte intégralm, Daniel Nystro. Colorimetric and multispectral image acquisition. Norrko ping : Digital Media Division, Dept. of Science and Technology, Campus Norrko ping, Linko ping University, 2006.
Trouver le texte intégralK, Lucchitta Baerbel, dir. Multispectral Landsat images of Antarctica. Washington : U.S. G.P.O., 1987.
Trouver le texte intégralMorresi, Fabio. New light on the Deposition by Caravaggio. Città del Vaticano : Edizioni Musei Vaticani, 2016.
Trouver le texte intégralJ, Shen, Wang Patrick S-P, Zhang T, Society of Photo-optical Instrumentation Engineers. et International Symposium on Multispectral Image Processing (1998 : Wuhan, China), dir. Multispectral image processing and pattern recognition. Singapore : World Scientific, 2001.
Trouver le texte intégralLandgrebe, David A. Signal Theory Methods in Multispectral Remote Sensing. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471723800.
Texte intégralChapitres de livres sur le sujet "Multispectral"
Zhang, David, Zhenhua Guo et Yazhuo Gong. « Overview ». Dans Multispectral Biometrics, 3–22. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_1.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Multiple Band Selection of Multispectral Dorsal Hand ». Dans Multispectral Biometrics, 187–206. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_10.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Comparison of Palm and Dorsal Hand Recognition ». Dans Multispectral Biometrics, 207–20. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_11.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Book Review and Future Work ». Dans Multispectral Biometrics, 223–26. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_12.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Multispectral Biometrics Systems ». Dans Multispectral Biometrics, 23–35. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_2.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Multispectral Iris Acquisition System ». Dans Multispectral Biometrics, 39–62. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_3.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Feature Band Selection for Multispectral Iris Recognition ». Dans Multispectral Biometrics, 63–88. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_4.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « The Prototype Design of Multispectral Iris Recognition System ». Dans Multispectral Biometrics, 89–114. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_5.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « An Online System of Multispectral Palmprint Verification ». Dans Multispectral Biometrics, 117–37. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_6.
Texte intégralZhang, David, Zhenhua Guo et Yazhuo Gong. « Empirical Study of Light Source Selection for Palmprint Recognition ». Dans Multispectral Biometrics, 139–51. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22485-5_7.
Texte intégralActes de conférences sur le sujet "Multispectral"
Lepretre, François. « Lens assemblies for multispectral camera ». Dans The European Conference on Lasers and Electro-Optics. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cfi6.
Texte intégralTrefilov, D. A., E. A. Antonov et A. A. Kupriyanov. « Laser backlight for multispectral camera ». Dans 2022 33th All-Russian Youth Exhibition of Innovations. Publishing House of Kalashnikov ISTU, 2022. http://dx.doi.org/10.22213/ie022144.
Texte intégralKapsokalyvas, Dimitrios, Nicola Bruscino, Giovanni Cannarozzo, Vicenzo de Giorgi, Torello Lotti et Francesco S. Pavone. « Multispectral Dermoscope ». Dans European Conference on Biomedical Optics. Washington, D.C. : OSA, 2009. http://dx.doi.org/10.1364/ecbo.2009.7368_0d.
Texte intégralKapsokalyvas, Dimitrios, Nicola Bruscino, Giovanni Cannarozzo, Vincenzo De Giorgi, Torello Lotti et Francesco S. Pavone. « Multispectral dermoscope ». Dans European Conferences on Biomedical Optics, sous la direction de Irene Georgakoudi, Jürgen Popp et Katarina Svanberg. SPIE, 2009. http://dx.doi.org/10.1117/12.831564.
Texte intégralLyu, Bin, Jie Qi, Fangyu Li et Kurt J. Marfurt. « Multispectral aberrancy ». Dans SEG Technical Program Expanded Abstracts 2020. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/segam2020-3426483.1.
Texte intégralBayya, Shyam S., Daniel J. Gibson, Adam Floyd, Vinh Nguyen, Jas Sanghera, Jay Vizgaitis et David Zelmon. « Multispectral optics ». Dans Image Sensing Technologies : Materials, Devices, Systems, and Applications IX, sous la direction de K. Kay Son, Nibir K. Dhar, Achyut K. Dutta et Sachidananda R. Babu. SPIE, 2022. http://dx.doi.org/10.1117/12.2621612.
Texte intégralCatrysse, Peter B., et Shanhui Fan. « Multispectral Routers for Snapshot Spectral Imaging ». Dans CLEO : Applications and Technology. Washington, D.C. : Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.atu3k.5.
Texte intégralLepretre, François. « Lens assemblies for multi-spectral camera ». Dans The European Conference on Lasers and Electro-Optics. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf20.
Texte intégralYong Xu et Qi Zhu. « PCA-Based Multispectral Band Compression and Multispectral Palmprint Recognition ». Dans 2011 International Conference on Hand-Based Biometrics (ICHB). IEEE, 2011. http://dx.doi.org/10.1109/ichb.2011.6094303.
Texte intégralShaffer, William A., et Ray O. Johnson. « Infrared multispectral field measurements for the joint multispectral program ». Dans SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, sous la direction de Wendell R. Watkins et Dieter Clement. SPIE, 1995. http://dx.doi.org/10.1117/12.210621.
Texte intégralRapports d'organisations sur le sujet "Multispectral"
Jokerst, Nan M. Multispectral Detector Array Technology. Fort Belvoir, VA : Defense Technical Information Center, décembre 1999. http://dx.doi.org/10.21236/ada408608.
Texte intégralBluzer, Nathan, et Martin G. Forrester. Multispectral Superconducting Quantum Detectors. Fort Belvoir, VA : Defense Technical Information Center, mars 1999. http://dx.doi.org/10.21236/ada361795.
Texte intégralSnyder, Wesley E. Segmentation Using Multispectral Adaptive Contours. Fort Belvoir, VA : Defense Technical Information Center, février 2004. http://dx.doi.org/10.21236/ada424462.
Texte intégralOldenborger, G. A., B. Faucher et A. M. LeBlanc. Multispectral permafrost terrain classification, Rankin Inlet, Nunavut. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328869.
Texte intégralBecker, Sarah, Craig Daughtry et Andrew Russ. Robust forest cover indices for multispectral images. Engineer Research and Development Center (U.S.), décembre 2021. http://dx.doi.org/10.21079/11681/42760.
Texte intégralTheiler, James Patrick. Machine Learning for Background Estimation in Multispectral Imagery. Office of Scientific and Technical Information (OSTI), octobre 2018. http://dx.doi.org/10.2172/1479921.
Texte intégralPinkus, Alan R., David W. Dommett, H. L. Task, Sheldon E. Unger et David W. Sivert. Synthetic Observer Approach to Multispectral Sensor Resolution Assessment. Fort Belvoir, VA : Defense Technical Information Center, septembre 2010. http://dx.doi.org/10.21236/ada528908.
Texte intégralSheffield, Charles, et Gil Richardson. New Methods of Change Detection Using Multispectral Data. Fort Belvoir, VA : Defense Technical Information Center, mai 1991. http://dx.doi.org/10.21236/ada239370.
Texte intégralRand, Robert S., John E. Anderson et Donald A. Davis. Multispectral Image Maps from Landsat Thematic Mapper Data. Fort Belvoir, VA : Defense Technical Information Center, septembre 1991. http://dx.doi.org/10.21236/ada240453.
Texte intégralNeer, Michael M. Multispectral Imagery in Support of Low Intensity Conflict. Fort Belvoir, VA : Defense Technical Information Center, mars 1990. http://dx.doi.org/10.21236/ada220651.
Texte intégral