Littérature scientifique sur le sujet « Nano-Theranostics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nano-Theranostics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nano-Theranostics"
Liu, Zhuang, et Xing-Jie Liang. « Nano-Carbons as Theranostics ». Theranostics 2, no 3 (2012) : 235–37. http://dx.doi.org/10.7150/thno.4156.
Texte intégralYoon, Juyoung. « Theranostics based nano probes and nano carriers ». Coordination Chemistry Reviews 415 (juillet 2020) : 213297. http://dx.doi.org/10.1016/j.ccr.2020.213297.
Texte intégralSharmiladevi, Palani, Koyeli Girigoswami, Viswanathan Haribabu et Agnishwar Girigoswami. « Nano-enabled theranostics for cancer ». Materials Advances 2, no 9 (2021) : 2876–91. http://dx.doi.org/10.1039/d1ma00069a.
Texte intégralKalita, Himani, et Manoj Patowary. « Biocompatible Polymer Nano-Constructs : A Potent Platform for Cancer Theranostics ». Technology in Cancer Research & ; Treatment 22 (janvier 2023) : 153303382311603. http://dx.doi.org/10.1177/15330338231160391.
Texte intégralLee, Songyi, Thanh Chung Pham, Chaeeon Bae, Yeonghwan Choi, Yong Kyun Kim et Juyoung Yoon. « Nano theranostics platforms that utilize proteins ». Coordination Chemistry Reviews 412 (juin 2020) : 213258. http://dx.doi.org/10.1016/j.ccr.2020.213258.
Texte intégralWang, Yong-Mei, Ying Xu, Xinxin Zhang, Yifan Cui, Qingquan Liang, Cunshun Liu, Xinan Wang, Shuqi Wu et Rusen Yang. « Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy ». Nanomaterials 12, no 2 (17 janvier 2022) : 287. http://dx.doi.org/10.3390/nano12020287.
Texte intégralSneider, Alexandra, Derek VanDyke, Shailee Paliwal et Prakash Rai. « Remotely Triggered Nano-Theranostics For Cancer Applications ». Nanotheranostics 1, no 1 (2017) : 1–22. http://dx.doi.org/10.7150/ntno.17109.
Texte intégralYao, Jingwen, Chao-Hsiung Hsu, Zhao Li, Tanya Kim, Lian-Pin Hwang, Ying-Chih Lin et Yung-Ya Lin. « Magnetic Resonance Nano-Theranostics for Glioblastoma Multiforme ». Current Pharmaceutical Design 21, no 36 (2 novembre 2015) : 5256–66. http://dx.doi.org/10.2174/1381612821666150923103307.
Texte intégralMousavi, Hajar, Behrooz Movahedi, Ali Zarrabi et Marzieh Jahandar. « A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics ». RSC Advances 5, no 94 (2015) : 77255–63. http://dx.doi.org/10.1039/c5ra16776k.
Texte intégralDai, Yan-Dong, Xue-Yi Sun, Wan Sun, Jing-Bo Yang, Rui Liu, Yi Luo, Tao Zhang, Yu Tian, Zhong-Lin Lu et Lan He. « H2O2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging ». Organic & ; Biomolecular Chemistry 17, no 22 (2019) : 5570–77. http://dx.doi.org/10.1039/c9ob00859d.
Texte intégralThèses sur le sujet "Nano-Theranostics"
Maturi, Mirko <1993>. « Advanced Functional Organic-Inorganic Hybrid (Nano)Materials : from Theranostics to Organic Electronics and Additive Manufacturing ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9739/1/Maturi_Mirko_tesi.pdf.
Texte intégralPerecin, Caio José. « Nanopartículas superparamagnéticas encapsuladas com polímeros para tratamento de câncer por hipertermia ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/82/82131/tde-22062016-103823/.
Texte intégralCancer is one of the greatest causes of mortality in Brazil and in the world, with growing potential for the next decades. A promising treatment alternative is magnetic hyperthermia, in which tumor cells die by the heat generated by magnetic nanoparticles after application of an alternate magnetic field in adequate frequencies. Such particles are also capable of acting as contrast agents for magnetic resonance imaging, a powerful method of diagnosis for the identification of neoplasic cells, which characterizes the combination of properties known as theranostics (therapy and diagnosis). In this work, iron oxide nanoparticles were synthesized by coprecipitation method with subsequent encapsulation by nano spray drying technique, aiming their application on cancer treatment by hyperthermia and on magnetic resonance imaging as a contrast agent. Polymeric matrices of Maltodextrin with Polysorbate 80, Pluronic F68, Eudragit® S100 and PCL with Pluronic F68 were employed for encapsulation, chosen carefully to create particles that disperse well in aqueous media and that are able to address the tumoral target after administration into the patient\'s body. Drying parameters of the Nano Spray Dryer equipment, such as temperature, dispersing medium and reagent concentrations, were evaluated. The generated particles were characterized by Scanning Electron Microscopy, X-Ray Diffraction, Thermogravimetric Analysis, Dynamic Light Scattering, Infrared Spectroscopy, by magnetism in matters of applied magnetic field and temperature, cytotoxic potential and heating potential. Such methods indicated that the coprecipitation method was able to produce magnetite nanoparticles with size of approximately 20 nm, superparamagnetic at room temperature and with no cytotoxic potential. The nano spray drying technique was efficient to produce particles with size of around 1 μm, biocompatible, superparamagnetic and with adequate magnetic properties for the intended applications. The sample OF-10/15-1P stands out with a saturation magnetization of 68.7 emu/g and presenting specific interactions with the tumour cells.
Alaouta, Cherine. « Imagerie moléculaire pour la nano-théranostique : approche par spectroscopie Raman ». Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMP201.
Texte intégralAlthough cancer treatment has seen considerable progress, resistance to anticancer therapies remains a major cause of treatment failure. One approach to address this challenge is drug squalenization, a method that involves covalently attaching squalene to active pharmaceutical compounds, thereby generating powerful anticancer agents with self-assembly capabilities. In this study, Raman microspectroscopy was utilized to investigate the effects of the anticancer drugs Gem and DXF, along with squalenized nanoparticles (non-deuterated and deuterated GemSQ, and SQDXF), on breast carcinoma cell lines (MCF7 and MDA-MB-231) and colon carcinoma cell lines (HT-29 and HCT-116).Both Gem and DXF exhibit weak Raman cross sections, making them difficult to detect using Raman spectroscopy at physiological concentrations due to their nucleoside-analogue structures and low fluorescence quantum yield. To enhance the detectability of Gem, it was conjugated with deuterated squalenic acid, producing an analogue with a distinct spectral signature in the 2000-2300 cm⁻¹ range, free from interference by endogenous cell molecules. However, this strategy was not feasible for DXF, and the detection of SQDXF nanoparticles was instead achieved by monitoring their subcellular effects.The results provided valuable insights into the interactions between the drugs and key cellular components such as DNA, RNA, proteins, and lipids, with the findings being linked to the cytotoxic effects of the compounds. This research opens up promising new avenues in nanomedicine
Wu, Linxi. « The impact of nanoconjugation to EGF-induced apoptosis ». Thesis, 2016. https://hdl.handle.net/2144/14555.
Texte intégral2017-01-01T00:00:00Z
Livres sur le sujet "Nano-Theranostics"
Zarepour, Atefeh, Ali Zarrabi et Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3563-0.
Texte intégralNano-Pharmacokinetics and Theranostics. Elsevier, 2021. http://dx.doi.org/10.1016/c2020-0-02014-1.
Texte intégralLiu, Qing, et Donglu Shi. Tissue Engineering and Nano Theranostics. World Scientific Publishing Co Pte Ltd, 2017.
Trouver le texte intégralZarepour, Atefeh, Ali Zarrabi et Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Springer, 2017.
Trouver le texte intégralZarepour, Atefeh, Ali Zarrabi et Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Springer, 2017.
Trouver le texte intégralThorat, Nanasaheb D., et Nitesh Kumar. Nano-Pharmacokinetics and Theranostics : Advancing Cancer Therapy. Elsevier Science & Technology Books, 2021.
Trouver le texte intégralChapitres de livres sur le sujet "Nano-Theranostics"
Zarepour, Atefeh, Ali Zarrabi et Arezoo Khosravi. « SPIONs as Nano-Theranostics Agents ». Dans SPIONs as Nano-Theranostics Agents, 1–44. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3563-0_1.
Texte intégralIchiyanagi, Yuko. « Magnetic Nanoparticles for Diagnostics and Therapy ». Dans Extracellular Fine Particles, 261–73. Singapore : Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7067-0_18.
Texte intégralJain, Kopal, Nikita Basant et Amit Panwar. « New Developments in Nano-theranostics Combined with Intelligent Bio-responsive Systems ». Dans Smart Nanomaterials Targeting Pathological Hypoxia, 347–65. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1718-1_18.
Texte intégralSaini, Neha, Prem Pandey, Mandar Shirolkar, Atul Kulkarni, Sang-Hyun Moh et Anjali A. Kulkarni. « Role of Carbon Nanostructures as Nano-Theranostics Against Breast and Brain Cancer ». Dans Materials Horizons : From Nature to Nanomaterials, 1151–72. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7188-4_41.
Texte intégralFatima, Syeda Warisul, Shahenvaz Alam et Sunil K. Khare. « Janus Nano-Assembly Based Sensing Platform for Cancer Theranostics : An Unrivaled Mastering Bioimaging Perspective ». Dans Nanoscale Sensors and their Applications in Biomedical Imaging, 225–49. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3144-2_14.
Texte intégralPham, Tuan, Carl Beigie, Yoonjee Park et Joyce Y. Wong. « Microbubbles as Theranostics Agents ». Dans Nano-Oncologicals, 329–50. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_12.
Texte intégralSingh, Gagandeep, L. Preethi et Neelam Thakur. « Nano–Bio Dynamics ». Dans Nanoparticles in Cancer Theranostics, 53–68. Boca Raton : CRC Press, 2024. http://dx.doi.org/10.1201/9781003463191-4.
Texte intégralSingh, Gagandeep, Arshiya Sood et Neelam Thakur. « Nano Contrast Agents ». Dans Nanoparticles in Cancer Theranostics, 110–22. Boca Raton : CRC Press, 2024. http://dx.doi.org/10.1201/9781003463191-8.
Texte intégralConde, João, Furong Tian, Pedro V. Baptista et Jesús M. de la Fuente. « Multifunctional Gold Nanocarriers for Cancer Theranostics : From Bench to Bedside and Back Again ? » Dans Nano-Oncologicals, 295–328. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_11.
Texte intégralParihar, Vipan Kumar. « Nano-pharmacokinetics and cancer theranostics ». Dans Nano-Pharmacokinetics and Theranostics, 221–32. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-85050-6.00014-1.
Texte intégralActes de conférences sur le sujet "Nano-Theranostics"
Delehanty, James B., Juan B. Blanco-Canosa, Christopher E. Bradburne, Kimihiro Susumu, Michael H. Stewart, Duane E. Prasuhn, Philip E. Dawson et Igor L. Medintz. « Controlling the intracellular fate of nano-bioconjugates : pathways for realizing nanoparticle-mediated theranostics ». Dans SPIE NanoScience + Engineering, sous la direction de Hooman Mohseni, Massoud H. Agahi et Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2064372.
Texte intégralSuttee, Ashish, et Prashant Tandale. « Graphene oxide based multifunctional nano composite for cancer theranostics : Present clinical and regulatory breakthroughs ». Dans THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0162990.
Texte intégralGoswami, Mayank, Xinlei Wang, Pengfei Zhang, Wenwu Xiao, Kit S. Lam, Edward N. Pugh et Robert J. Zawadzki. « Methods for non-surgical cancer nano-theranostics of ocular tumors in the mouse eye (Conference Presentation) ». Dans Ophthalmic Technologies XXVII, sous la direction de Fabrice Manns, Per G. Söderberg et Arthur Ho. SPIE, 2017. http://dx.doi.org/10.1117/12.2251803.
Texte intégralLodi, Matteo B. « A Preliminary Propagation Study on Magnetic Scaffolds for Microwave Theranostics ». Dans 2023 IEEE 23rd International Conference on Nanotechnology (NANO). IEEE, 2023. http://dx.doi.org/10.1109/nano58406.2023.10231176.
Texte intégralChauhan, Deepak Singh, et Rohit Srivastava. « Synthesis and characterization of gold encapsulated and tamoxifen loaded PLGA nanoparticles for breast cancer theranostics ». Dans 2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2015. http://dx.doi.org/10.1109/nanomed.2015.7492510.
Texte intégralRapports d'organisations sur le sujet "Nano-Theranostics"
Tantsyrev, Anatoliy, Yuliya Titova et Andrey Ivanov. Polysaccharide macromolecules as transport matrices of nano-size compositions, candidates for diagnostics, therapy and theranostics of cancer diseases. Peeref, juin 2023. http://dx.doi.org/10.54985/peeref.2306p9855801.
Texte intégral