Littérature scientifique sur le sujet « Nanocatalysi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nanocatalysi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nanocatalysi"
Ma, Xiaohua, Dehua Deng, Ning Xia, Yuanqiang Hao et Lin Liu. « Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine ». Nanomaterials 11, no 7 (5 juillet 2021) : 1757. http://dx.doi.org/10.3390/nano11071757.
Texte intégralRoknabadi, Reza, Ali Akbar Mirzaei et Hossein Atashi. « Assessment of composition and calcination parameters in Fischer-Tropsch synthesis over Fe–Mn–Ce/γ-Al2O3 nanocatalyst ». Oil & ; Gas Science and Technology – Revue d’IFP Energies nouvelles 76 (2021) : 11. http://dx.doi.org/10.2516/ogst/2020089.
Texte intégralPakdehi, Shahram Ghanbari, Maryam Rasoolzadeh et Reihaneh Zolfaghari. « Synthesize and Investigation of the Catalytic Behavior of Ir/γ-Al2O3 Nanocatalyst ». Advanced Materials Research 829 (novembre 2013) : 163–67. http://dx.doi.org/10.4028/www.scientific.net/amr.829.163.
Texte intégralCho, Kie Yong, Yong Sik Yeom, Heun Young Seo, Pradip Kumar, Albert S. Lee, Kyung-Youl Baek et Ho Gyu Yoon. « Ionic block copolymer doped reduced graphene oxide supports with ultra-fine Pd nanoparticles : strategic realization of ultra-accelerated nanocatalysis ». Journal of Materials Chemistry A 3, no 41 (2015) : 20471–76. http://dx.doi.org/10.1039/c5ta06076a.
Texte intégralYang, Fan, Dehui Deng, Xiulian Pan, Qiang Fu et Xinhe Bao. « Understanding nano effects in catalysis ». National Science Review 2, no 2 (11 mai 2015) : 183–201. http://dx.doi.org/10.1093/nsr/nwv024.
Texte intégralLiu, Xiaodong, Tao Chen et Weilin Xu. « Revealing the thermodynamics of individual catalytic steps based on temperature-dependent single-particle nanocatalysis ». Physical Chemistry Chemical Physics 21, no 39 (2019) : 21806–13. http://dx.doi.org/10.1039/c9cp04538d.
Texte intégralHamied, Ramzy S., Khalid A. Sukkar, Hasan Shakir Majdi, Zainb Y. Shnain, Mohammed Shorbaz Graish et Luma H. Mahmood. « Catalytic-Level Identification of Prepared Pt/HY, Pt-Zn/HY, and Pt-Rh/HY Nanocatalysts on the Reforming Reactions of N-Heptane ». Processes 11, no 1 (14 janvier 2023) : 270. http://dx.doi.org/10.3390/pr11010270.
Texte intégralGao, Yan, Tao Luan, Shitao Zhang, Wenchao Jiang, Wenchen Feng et Haolin Jiang. « Comprehensive Comparison between Nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 for NO Catalytic Conversion : An Insight from Nanostructure, Performance, Kinetics, and Thermodynamics ». Catalysts 9, no 2 (13 février 2019) : 175. http://dx.doi.org/10.3390/catal9020175.
Texte intégralR, Sandhya, Velavan R et Ravichandran J. « Transesterification of Waste Cooking Oil Catalysed by Crystalline Copper Doped Zinc Oxide Nanocatalyst ». JOURNAL OF ADVANCES IN CHEMISTRY 12, no 12 (22 décembre 2016) : 5798–808. http://dx.doi.org/10.24297/jac.v12i12.7343.
Texte intégralJang, Sanha, Dicky Annas, Sehwan Song, Jong-Seong Bae, Sungkyun Park et Kang Hyun Park. « Non-Solvent Synthesis of a Robust Potassium-Doped PdCu-Pd-Cu@C Nanocatalyst for High Selectively Tandem Reactions ». Catalysts 11, no 10 (29 septembre 2021) : 1191. http://dx.doi.org/10.3390/catal11101191.
Texte intégralThèses sur le sujet "Nanocatalysi"
Vivien, Anthony. « Complexes de cobalt(I) : synthèse raisonnée de nanocristaux mono- ou bimétalliques et applications catalytiques ». Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS235.
Texte intégralNanocatalysis universe is a field which is yet to be explored, especially because of the difficult access to simple and well-controlled nanoparticles and their uses in heterogeneous catalyzed reactions. In this work, we show that it is possible to obtain hcp cobalt nanoparticles starting from the easily accessible CoCl(PPh3)3 and by simply heating it in oleylamine. The mechanism of this reaction based on the disproportionation of the cobalt(I) was proved by experimental and theoretical studies. We also demonstrate that it is possible to control the size and the shape of those nanoparticles by changing some parameters like the reaction time or the nature of the organometallic precursor. Moreover, by using the same protocol with other metals (especially nickel) we were able to obtain nanoparticles and then to form CoxNi1-x bimetallic alloys. Our nanoparticles were used for hydrogenation and hydrogen transfer reactions in presence of NH3BH3 (mainly on alkynes) giving good conversions and selectivities. We then compare those results with homogeneous catalysis, using different cobalt complexes. We made an in-depth study of this homogeneous catalysis which shows once again the efficiency of cobalt (as nanoparticles or organometallic complexes) on hydrogenations and hydrogen transfers. Those results offer new opportunities concerning the use of non-noble metals for the storage and the use of dihydrogen, allowing easier access towards energy applications
Giorgi, Pascal. « Nouvelles réactions à économie d'atomes et d'étapes basées sur la catalyse par des nanoparticules d'or et la multicatalyse. Applications dans la synthèse de chimie fine et des odorants ». Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4127.
Texte intégralElaboration of synthetic methods based on metal-catalyzed reactions has been a hot topic in organic chemistry. Despite good efficiency, catalysis proceeding homogeneously, are limited in the operation of recovering/recycling of the catalysts. An important stress was placed to design catalysis, offering both the efficiency of homogeneous catalysts and the recyclability of heterogeneous catalysts. In this context, metal nanoparticles merged as a key tool, due to their unique physical and chemical properties. Notably, Au NPs have shown remarkable catalytic activity in the oxidation of activated alcohols under O2 atmosphere. Since now, the access to more complex molecules is the next step forward for this field, we envisioned multicatalytic roads, based on the oxidation of activated alcohols via supported Au NPs. Our choice of using solid catalysts was relevant, since nanostructured catalysts for which the fraction of active sites are located on the surface, limit the risk of cross-quenching. The latter carbonyl formed, could be further converted in situ, via tandem protocol. Herein, we developed novel, atom- and step-economical bicatalytic one-pot processes, to access substituted chromenes/quinolines (53-93%) by tandem oxidation/hetero-Michael addition/aldolisation combining nanocatalysis and base catalysis, ortho-THCs (50-81%) via tandem oxidation/arylation/cyclisation combining nanocatalysis and supported catalysts and a tandem cascade oxidation/hydrolysis to access HMLA (86%, sel 93%). A large panel of products of biological activity relevance, pertaining to the fragrance chemistry or aiming in some cases, pre-industrial scalability via continuous flow applications
Garlyyev, Batyr. « Synthesis and catalytic study of shell-shell, core-shell hollow gold nanocatalysts ». Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54996.
Texte intégralGaikwad, A. V. « Nanocatalysts properties and applications / ». [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2009. http://dare.uva.nl/document/125006.
Texte intégralLiu, Qiaoran. « Photocatalytic performance of nanocatalysts ». Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/88099.
Texte intégralLing, Huajuan. « Development of Novel Nanocatalysts for Green Chemical Processes ». Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17708.
Texte intégralBroderick, Meghann. « Characterization of Stabilized Palladium Nanocatalysts ». VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2201.
Texte intégralBenkirane, Olivia. « New perspectives in nanocatalysis using design of experiments ». Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/665618.
Texte intégralEl uso de catalizadores activos y selectivos en procesos industriales puede minimizar la formación de residuos no reciclables. Entre los procesos catalíticos más comunes, la semi-hidrogenación de alquinos en alquenos ha sido objeto de especial atención por su relevancia en las industrias petroquímica, de polímeros y de química fina. La selección de catalizadores heterogéneos apropiados puede mejorar la productividad y evitar problemas de sobre hidrogenación y/o oligomerización. Esta tesis trata de la síntesis y caracterización de nuevos catalizadores coloidales para su aplicación en reacciones de hidrogenación selectiva utilizando diseño de experimentos (DOE). Se proponen nuevas síntesis de nanopartículas de Pd, así como metodologías eficientes para la planificación de experimentos, demostración de reproducibilidad y tratamiento analítico de datos de TEM. Se estudió la relación estructura-síntesis de nanopartículas utilizando DOE y se evaluó el efecto de varios parámetros sobre el tamaño, distribución y forma de las nanopartículas así como sobre la eficacia de la síntesis. Los parámetros e interacciones clave se resaltaron obteniendo una receta de nanopartículas coloidales bien definidas. La impregnación de estas nanopartículas en diferentes soportes catalíticos se realizó utilizando síntesis de una y dos etapas y se estudió el efecto de la inmovilización, los parámetros de síntesis, el soporte catalítico, el contenido de Pd y la relación de síntesis sobre el tamaño y dispersión de las NPs. Finalmente, se realizó un estudio cinético de la hidrogenación con 1-octino sobre cuatro catalizadores soportados usando DOE. La concentración de 1-octino, la presión de hidrógeno y la temperatura se modificaron según los experimentos diseñados, y solo fueron necesarias 24 pruebas catalíticas para obtener expresiones cinéticas robustas que permitieron comparar el rendimiento de los catalizadores. Esta tesis ofrece un análisis profundo del diseño de nuevos nanocatalizadores basados en Pd para su aplicación en reacciones de semi-hidrogenación de alquinos utilizando metodologías prácticas y efectivas.
Heterogeneous catalysts offer an essential tool to achieve a suitable use of energy and chemicals. Indeed, the use of active and selective catalysts in industrial processes can minimize the formation of non-recyclable waste. Among the most commonly applied catalytic processes, the semi-hydrogenation of alkynes into alkenes has been the object of particular attention for its relevance in the petrochemicals, polymer and fine chemical industries. Indeed the selection of proper heterogeneous catalysts derives in productivity improvements preventing over-hydrogenation and/or oligomerization issues. The thesis dealt with the synthesis and characterization of novel catalysts prepared by colloidal approach for application in selective hydrogenation reactions using design of experiments methodology (DOE). Novel synthesis of colloidal Pd NPs was proposed as well as efficient methodologies for the experiment planning, reproducibility demonstration and analytical treatment of TEM data. Two NPs structure-synthesis relationship studies were performed using DOE. The effect of several parameters on the NPs size, distribution, shape and synthesis efficiency were assessed. The key parameters and interactions were highlighted and recipe of well-defined colloidal NPs were delivered. Impregnation of these NPs on different catalytic supports was performed using one pot and two-step syntheses. The effect of the immobilization process, parameter of synthesis, catalytic support, Pd content and scale of the synthesis on the NPs size and dispersion were studied. Finally, a kinetic study of the 1-octyne hydrogenation over four supported catalysts was performed using DOE. The 1-octyne concentration, hydrogen pressure and temperature were varied according to designed experiments: only 24 catalytic tests were performed to obtain robust kinetic expressions for the four catalysts. Thanks to these kinetic data, their performances were compared. This thesis offers a deeper analysis on the design of new Pd-based nanocatalysts for application in alkyne semi-hydrogenation reactions using practical and effective methodologies.
Yu, Bin. « Development of silver nanocatalyst for propylene selective oxidation reaction ». Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:0f3f0556-bff1-4af1-bfe0-0e62b0425bff.
Texte intégralHorecha, Marta, Elisabeth Kaul, Andriy Horechyy et Manfred Stamm. « Polymer microcapsules loaded with Ag nanocatalyst as active microreactors ». Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36237.
Texte intégralLivres sur le sujet "Nanocatalysi"
Ameta, Keshav Lalit, et Ravi Kant. Nanocatalysis. New York : CRC Press, 2022. http://dx.doi.org/10.1201/9781003141488.
Texte intégralHeiz, Ulrich, et Uzi Landman, dir. Nanocatalysis. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-32646-5.
Texte intégralU, Heiz, et Landman Uzi, dir. Nanocatalysis. 2e éd. Berlin : Springer Heidelberg, 2007.
Trouver le texte intégralXu, Weilin, Yuwei Zhang et Tao Chen. Single Particle Nanocatalysis. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527809721.
Texte intégralPrechtl, Martin H. G., dir. Nanocatalysis in Ionic Liquids. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527693283.
Texte intégralPolshettiwar, Vivek, et Tewodros Asefa, dir. Nanocatalysis Synthesis and Applications. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118609811.
Texte intégralAsefa, Tewodros, et Vivek Polshettiwar. Nanocatalysis : Synthesis and applications. Hoboken, New Jersey : John Wiley & Sons, Inc., 2013.
Trouver le texte intégralDalai, Ajay K., dir. Nanocatalysis for Fuels and Chemicals. Washington, DC : American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1092.
Texte intégralW, Roberts M., et Royal Society of Chemistry (Great Britain), dir. Atom resolved surface reactions : Nanocatalysis. Cambridge : RSC Publishing, 2008.
Trouver le texte intégralDalai, Ajay Kumar. Nanocatalysis for fuels and chemicals. Washington DC : American Chemical Society, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Nanocatalysi"
Fernández-Rodríguez, Pablo, Jorge Hurtado de Mendoza, José Luis López-Colón, Antonio José López-Peinado et Rosa María Martín-Aranda. « Nanotechnology ». Dans Nanocatalysis, 3–21. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-1.
Texte intégralZiolek, Maria, Izabela Sobczak et Lukasz Wolski. « Gold Loaded on Niobium, Zinc and Cerium Oxides ». Dans Nanocatalysis, 254–99. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-10.
Texte intégralPérez-Mayoral, Elena, Marina Godino-Ojer et Daniel González-Rodal. « Bifunctional Porous Catalysts in the Synthesis of Valuable Products ». Dans Nanocatalysis, 25–61. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-2.
Texte intégralCalvino-Casilda, Vanesa, et Eugenio Muñoz Camacho. « State-of-the-Art in Nanocatalysts for the Transformation of Glycerol into High Added Value Products ». Dans Nanocatalysis, 62–78. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-3.
Texte intégralZuliani, Alessio, et Rafael Luque. « Producing Fuels and Fine Chemicals from Biomass using Nanomagnetic Materials ». Dans Nanocatalysis, 81–114. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-4.
Texte intégralGuerrero-Pérez, M. Olga. « Mixed-Oxide Nanocatalysts for Light Alkane Activation ». Dans Nanocatalysis, 115–34. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-5.
Texte intégralRojas Cervantes, Míria Luisa. « Nanocatalysts from Biomass and for the Transformation of Biomass ». Dans Nanocatalysis, 135–64. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-6.
Texte intégralAbbo, Hanna S., Nader Ghaffari Khaligh et Salam J. J. Titinchi. « Nanocatalysis and their Application in Water and Wastewater Treatment ». Dans Nanocatalysis, 167–223. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-7.
Texte intégralNeves, Isabel Correia, António M. Fonseca et Pier Parpot. « Nanocatalysts Based in Zeolites for Environmental Applications ». Dans Nanocatalysis, 224–35. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-8.
Texte intégralGutiérrez-Sánchez, Cristina. « Bioelectrocatalysis ». Dans Nanocatalysis, 236–53. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019. | “A science publishers book.” : CRC Press, 2019. http://dx.doi.org/10.1201/9781315202990-9.
Texte intégralActes de conférences sur le sujet "Nanocatalysi"
Chen, Peng. « SINGLE-MOLECULE MICROSCOPY OF NANOCATALYSIS ». Dans 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois : University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.ma03.
Texte intégralRachana, S., R. N. Viswanath, S. R. Polaki et A. K. Tyagi. « Polymer supported porous Pd nanocatalyst ». Dans International Conference on Nanoscience, Engineering and Technology (ICONSET 2011). IEEE, 2011. http://dx.doi.org/10.1109/iconset.2011.6168018.
Texte intégralFeng, Hao, Xun Zhu, Rong Chen et Qiang Liao. « Visualization Study on Two-Phase Flow Behaviors in the Gas-Liquid-Solid Microreactor for Hydrogenation of Nitrobenzene ». Dans ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1011.
Texte intégralZamani, Amir, Brij B. Maini et Pedro Pereira-Almao. « Propagation of Nanocatalyst Particles Through Athabasca Sands ». Dans Canadian Unconventional Resources Conference. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2118/148855-ms.
Texte intégralNiculescu, Violeta-Carolina, Irina Petreanu, Claudia Sandru, Marius Constantinescu et Felicia Bucura. « SYNTHESIS OF Cu-Zn-MCM-41 NANOCATALYST ». Dans International Symposium "The Environment and the Industry". National Research and Development institute for Industrial Ecology, 2022. http://dx.doi.org/10.21698/simi.2022.ab11.
Texte intégralKuznetsov, Vladmir V., Oleg V. Vitovsky et Stanislav P. Kozlov. « Heat and Mass Transfer With Chemical Reactions Producing Hydrogen in Microchannels ». Dans ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58203.
Texte intégralUberman, Paula M., Natalia J. S. Costa, Joao L. P. Albuquerque, Alcindo A. Dos Santos et Liane M. Rossi. « Selective semi-hydrogenation of propargylamines using palladium magnetic nanocatalyst ». Dans 15th Brazilian Meeting on Organic Synthesis. São Paulo : Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_201310419485.
Texte intégralMoreira da Silva, Cora. « Tem characterization of bimetallic nanocatalyst obtained by colloidal chemistry ». Dans European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1011.
Texte intégralGhoreishi, S. M., et M. Alibouri. « Synthesis of NiMo/Al2O3 nanocatalyst via supercritical fluid technology ». Dans 2010 International Conference on Enabling Science and Nanotechnology (ESciNano). IEEE, 2010. http://dx.doi.org/10.1109/escinano.2010.5701060.
Texte intégralKIM, YOUNG DOK, et GERD GANTEFÖR. « ACTIVATED DIATOMIC SPECIES AS IMPORTANT REACTION INTERMEDIATES OF NANOCATALYSIS ». Dans Clusters and Nano-Assemblies - Physical and Biological Systems. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701879_0002.
Texte intégralRapports d'organisations sur le sujet "Nanocatalysi"
Landman, Uzi. Atomic-Scale Factors of Combustion Nanocatalysts. Fort Belvoir, VA : Defense Technical Information Center, mars 2014. http://dx.doi.org/10.21236/ada606267.
Texte intégralRoldan-Cuenya, Beatriz, H. Mistry et Y. Choi. Nanocatalysis : Size- and Shape-dependent Chemisorption and Catalytic Reactivity. Office of Scientific and Technical Information (OSTI), février 2017. http://dx.doi.org/10.2172/1485534.
Texte intégralSkrabalak, Sara. Decoupling the Electronic and Geometric Parameters of Metal Nanocatalysts. Office of Scientific and Technical Information (OSTI), août 2019. http://dx.doi.org/10.2172/1547311.
Texte intégralHuang, Yu. Biomolecular Specificity Regulated Synthesis of Nanocatalysts and Heterointegration of Photosynthesis Nanodevices. Fort Belvoir, VA : Defense Technical Information Center, janvier 2016. http://dx.doi.org/10.21236/ad1006722.
Texte intégralKuila, Debasish, et Shamsuddin Ilias. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels. Office of Scientific and Technical Information (OSTI), février 2013. http://dx.doi.org/10.2172/1113826.
Texte intégralKraus, George. Mesoporous Silica-Supported Metal Oxide-Promoted Rh Nanocatalyst for Selective Production of Ethanol from Syngas. Office of Scientific and Technical Information (OSTI), septembre 2010. http://dx.doi.org/10.2172/1030556.
Texte intégralVlachos, Dionisios G., Douglas J. Buttrey et Jochen A. Lauterbach. Hydrogen initiative : An integrated approach toward rational nanocatalyst design for hydrogen production. Technical Report-Year 1. Office of Scientific and Technical Information (OSTI), mars 2007. http://dx.doi.org/10.2172/901553.
Texte intégralTHOMPSON, ANTHONY. UNDERSTANDING PHOTOCARRIER AND GAS DYNAMICS TO RATIONALLY DESIGN HETEROSTRUCTURED NANOCATALYSTS FOR SOLAR CO2 CONVERSION. Office of Scientific and Technical Information (OSTI), octobre 2021. http://dx.doi.org/10.2172/1827688.
Texte intégralTHOMPSON, ANTHONY, PATRICK WARD, SIMONA MURPH, ZACHARY DUCA et LAUREN HANNA. UNDERSTANDING PHOTOCARRIER AND GAS DYNAMICS TO RATIONALLY DESIGN HETEROSTRUCTURED NANOCATALYSTS FOR EFFICIENT SOLAR CO2 CONVERSION. Office of Scientific and Technical Information (OSTI), août 2022. http://dx.doi.org/10.2172/1883330.
Texte intégralRuqian Wu. Final Technical Report : First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts. Office of Scientific and Technical Information (OSTI), mai 2012. http://dx.doi.org/10.2172/1040706.
Texte intégral