Littérature scientifique sur le sujet « Nanocrystals Synthesis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nanocrystals Synthesis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nanocrystals Synthesis"
Mohammadrezaee, Mohammad, Naser Hatefi-Kargan et Ahmadreza Daraei. « Enhancing crystal quality and optical properties of GaN nanocrystals by tuning pH of the synthesis solution ». Zeitschrift für Naturforschung A 75, no 6 (26 mai 2020) : 551–56. http://dx.doi.org/10.1515/zna-2019-0378.
Texte intégralLin, Weyde M. M., Maksym Yarema, Mengxia Liu, Edward Sargent et Vanessa Wood. « Nanocrystal Quantum Dot Devices : How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces ». CHIMIA International Journal for Chemistry 75, no 5 (28 mai 2021) : 398–413. http://dx.doi.org/10.2533/chimia.2021.398.
Texte intégralKomarov, Fadey, Altynay Togambayeva, Ludmila Vlasukova, Irina Parkhomenko, Oleg Milchanin, Maksim Makhavikov et Murat Tolkynay. « Ion-Beam Synthesis of InSb Nanocrystals in Si Matrix ». Advanced Materials Research 679 (avril 2013) : 9–13. http://dx.doi.org/10.4028/www.scientific.net/amr.679.9.
Texte intégralSvrcek, Vladimir. « (Invited) Atmospheric Plasmas Synthesized Nanocrystals with Quantum Confinement and Quantum Hybrids in Photovoltaics ». ECS Meeting Abstracts MA2022-02, no 19 (9 octobre 2022) : 889. http://dx.doi.org/10.1149/ma2022-0219889mtgabs.
Texte intégralKim, Jong Ung, Jeong A. Lee, Beyong Hwan Ryu, Ki Won Jun, In Ho Kim et Young Min Choi. « Synthesis and Characterization of PbSe Nanocrystals by a Microchannel Reactor ». Solid State Phenomena 124-126 (juin 2007) : 1285–88. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1285.
Texte intégralFeng, Anni, Jiankang Cao, Junying Wei, Feng Chang, Yang Yang et Zongyuan Xiao. « Facile Synthesis of Silver Nanoparticles with High Antibacterial Activity ». Materials 11, no 12 (8 décembre 2018) : 2498. http://dx.doi.org/10.3390/ma11122498.
Texte intégralXiong, Zichang, Himashi P. Andaraarachchi, Jacob T. Held, Rick W. Dorn, Yong-Jin Jeong, Aaron Rossini et Uwe R. Kortshagen. « Inductively Coupled Nonthermal Plasma Synthesis of Size-Controlled γ-Al2O3 Nanocrystals ». Nanomaterials 13, no 10 (12 mai 2023) : 1627. http://dx.doi.org/10.3390/nano13101627.
Texte intégralChernomordik, B. D., A. E. Béland, N. D. Trejo, A. A. Gunawan, D. D. Deng, K. A. Mkhoyan et E. S. Aydil. « Rapid facile synthesis of Cu2ZnSnS4 nanocrystals ». J. Mater. Chem. A 2, no 27 (2014) : 10389–95. http://dx.doi.org/10.1039/c4ta01658k.
Texte intégralGao, Yukun, et PG Yin. « Synthesis of cubic CdSe nanocrystals and their spectral properties ». Nanomaterials and Nanotechnology 7 (1 janvier 2017) : 184798041770174. http://dx.doi.org/10.1177/1847980417701747.
Texte intégralDella Gaspera, Enrico, Noel W. Duffy, Joel van Embden, Lynne Waddington, Laure Bourgeois, Jacek J. Jasieniak et Anthony S. R. Chesman. « Plasmonic Ge-doped ZnO nanocrystals ». Chemical Communications 51, no 62 (2015) : 12369–72. http://dx.doi.org/10.1039/c5cc02429c.
Texte intégralThèses sur le sujet "Nanocrystals Synthesis"
Zhang, Jun. « Shape control in synthesis of functional nanocrystals ». Diss., Online access via UMI:, 2009.
Trouver le texte intégralDinega, Dmitry P. (Dmitry Petrovich) 1969. « Synthesis and characterization of cobalt nanocrystals ». Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8250.
Texte intégralIncludes bibliographical references.
Although several theoretical models for the behavior of magnetic crystals smaller than a single domain size were developed in the 1950's and 60's, they have hardly been verified experimentally because of the lack of appropriate material systems. This thesis is an attempt to develop such a system using metallic cobalt as a magnetic material and to verify its magnetic behavior in the context of a Stoner-Wohlfarth model of coherent rotation. The problem of preparing crystals of a desired shape and the effect of the crystal shape on its magnetic properties is also addressed. Cobalt nanocrystals are prepared by thermal decomposition of dicobalt octacarbonyl in solution and in the presence of suitable surfactants and coordinating ligands, which influence the shape of the resulting crystals as well as their internal structure. The presence of trialkylphosphines in the growth solution leads to the formation of spherical nanocrystals with mixed fcc-hcp structure, where as trioctylphosphine oxide leads to a newly discovered structure of [epsilon]-cobalt. The final size of the crystals is controlled by the precursor-to-ligand ratio, and low polydispersity is achieved by the separation of nucleation and growth stages. Size-selective precipitation is used to further reduce the size variation of the samples. As a result, cobalt nanocrystals in the size range of 4-12 nm in diameter can be routinely produced with size distributions as small as 6%. The study of magnetic properties reveals the superparamagnetic nature of cobalt nanocrystals of this size range at room temperature. At low temperatures, a good qualitative agreement with the theoretical (Stoner-Wohlfarth) model is found,
(cont.) although quantitative results are strongly influenced by the presence of an oxide shell around each nanocrystal. The presence of two surfactants (trialkylphosphines and sodium carboxylates) during the growth leads to the formation of a significant number of triangular and rod-shaped nanocrystals. Unlike disordered spherical particles, these nanocrystals have pure fcc structure without visible defects. The length of the rods is roughly controlled by the concentration of carboxylates in the growth solution and can be changed within a 40-400 nm range. Unlike spherical crystals of comparable volume, the rods are ferromagnetic even at room temperature due to an added effect of shape anisotropy. A growth mechanism for the formation of nanorods with cubic structure is also proposed.
by Dmitry P. Dinega.
Ph.D.
IMRAN, MUHAMMAD. « Synthesis and Post-synthesis Transformations of Colloidal Semiconductor Nanocrystals ». Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/945513.
Texte intégralMurphy, James Edward. « Semiconductor nanocrystals and nanocrystal arrays : Synthesis, characterization, and time-resolved terahertz spectroscopy photoconductivity measurements ». Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3207726.
Texte intégralSchmidt, Jan-Uwe. « Synthesis of silicon nanocrystal memories by sputter deposition ». Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28765.
Texte intégralSchmidt, Jan-Uwe. « Synthesis of silicon nanocrystal memories by sputter deposition ». Forschungszentrum Rossendorf, 2005. https://hzdr.qucosa.de/id/qucosa%3A21703.
Texte intégralYen, Brian K. H. « Microfluidic reactors for the synthesis of nanocrystals ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/38619.
Texte intégralVita.
Includes bibliographical references.
Several microfluidic reactors were designed and applied to the synthesis of colloidal semiconductor nanocrystals (NCs). Initially, a simple single-phase capillary reactor was used for the synthesis of CdSe NCs. Precursors were delivered into a section of the capillary maintained at high temperature where they decomposed and reacted to form NCs. Monodisperse, bright CdSe NC samples were prepared over a significant range of average sizes. The excellent stability and reproducibility of the continuous flow system was also demonstrated. However, a limitation of the single-phase flow approach was that slow mixing and large residence time distributions can be detrimental to the overall quality (eg. size distribution) of the NC samples produced. These limitations were overcome by designing and fabricating in silicon a gas-liquid segmented flow microreactor. In contrast to the single-phase flow, recirculation within the liquid segments provides a mechanism to exchange fluid elements located near the channel walls with those in the center. This recirculation has the dual of effect of reducing axial dispersion and greatly improving the mixing efficiency - factors which have a strong influence on the ultimate size and size distribution of NCs produced.
(cont.) Compared to single-phase operation, preparation of CdSe NCs in segmented flow resulted in superior reactor throughput and narrower size distributions. Finally, the segmented flow method was extended in a microreactor designed for the synthesis of more complicated NC architectures. The design incorporated multiple inlet channels, which allowed for continuous injection of multiple precursor streams. This reactor was used to synthesize several core/shell NC structures - CdSe/ZnS, CdSe/ZnSe, and CdSe/CdxZnl-xSe.
by Brian K.H. Yen.
Ph.D.
Khon, Elena. « Synthesis and Applications of Heterostructured Semiconductor Nanocrystals ». Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1374512926.
Texte intégralJansons, Adam. « Living Nanocrystals : Synthesis of Precisely Defined Metal Oxide Nanocrystals Through a Continuous Growth Process ». Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23172.
Texte intégralSARTORI, EMANUELA. « EMISSIVE NANOCRYSTALS FOR OPTOELECTRONIC APPLICATIONS ». Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1074636.
Texte intégralLivres sur le sujet "Nanocrystals Synthesis"
Pavesi, Lorenzo, et Rasit Turan. Silicon nanocrystals : Fundamentals, synthesis and applications. Weinheim : Wiley-VCH, 2010.
Trouver le texte intégralLi, Ji-Guang. TiO2 nanocrystals : Synthesis and enhanced functionality. Hauppauge, N.Y : Nova Science Publishers, 2010.
Trouver le texte intégralHendricks, Mark Patrick. The Synthesis of Colloidal Metal Sulfide Nanocrystals. [New York, N.Y.?] : [publisher not identified], 2015.
Trouver le texte intégralIwasaki, Tomohiro, et Tomohiro Iwasaki. Organic solvent-free synthesis of magnetic nanocrystals with controlled particle sizes. Hauppauge, N.Y : Nova Science Publishers, 2010.
Trouver le texte intégralIwasaki, Tomohiro. Organic solvent-free synthesis of magnetic nanocrystals with controlled particle sizes. Hauppauge, N.Y : Nova Science Publishers, 2010.
Trouver le texte intégralMcMurtry, Brandon Makana. Synthesis and Formation Mechanism of Metal Phosphide and Chalcogenide Nanocrystals. [New York, N.Y.?] : [publisher not identified], 2021.
Trouver le texte intégralI, Klimov Victor, dir. Semiconductor and metal nanocrystals : Synthesis and electronic and optical properties. New York : Marcel Dekker, Inc., 2004.
Trouver le texte intégralGlezer, A. M. Nanokristally, zakalennye iz rasplava. Moskva : Fizmatlit, 2012.
Trouver le texte intégralJ, Glembocki O., Materials Research Society et Materials Research Society Meeting, dir. Nanoparticles and nanowire building blocks--synthesis, processing, characterization and theory : Symposium held April 13-16, 2004, San Francisco, California, U.S.A. Warrendale, Pa : Materials Research Society, 2004.
Trouver le texte intégralL, Rogach Andrey, dir. Semiconductor nanocrystal quantum dots : Synthesis, assembly, spectroscopy, and applications. Wien : Springer, 2008.
Trouver le texte intégralChapitres de livres sur le sujet "Nanocrystals Synthesis"
Mangolini, Lorenzo, et Uwe Kortshagen. « Nonthermal Plasma Synthesis of Silicon Nanocrystals ». Dans Silicon Nanocrystals, 309–48. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch13.
Texte intégralElliman, Robert. « The Synthesis of Silicon Nanocrystals by Ion Implantation ». Dans Silicon Nanocrystals, 223–45. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch9.
Texte intégralHuang, He. « Synthesis of Perovskite Nanocrystals ». Dans Perovskite Quantum Dots, 1–18. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0_1.
Texte intégralNakamura, Hiroyuki, Masato Uehara et Hideaki Maeda. « Nanocrystals Synthesis by Microreactors ». Dans Advances in Science and Technology, 652–59. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.652.
Texte intégralCozzoli, P. Davide, Concetta Nobile, Riccardo Scarfiello, Angela Fiore et Luigi Carbone. « Magnetic Multicomponent Heterostructured Nanocrystals ». Dans Magnetic Nanomaterials - Fundamentals, Synthesis and Applications, 217–90. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527803255.ch8.
Texte intégralEhrenberg, Samantha K., Katharine I. Hunter et Uwe R. Kortshagen. « Silicon nanocrystals from plasma synthesis ». Dans Silicon Nanomaterials Sourcebook, 271–92. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series : Series in materials science and engineering : CRC Press, 2017. http://dx.doi.org/10.4324/9781315153544-14.
Texte intégralLee, Soo Jin, Woon Jo Cho, Chong Shik Chin et Il Ki Han. « Sonochemical Synthesis of Silicon Nanocrystals ». Dans Key Engineering Materials, 995–99. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-958-x.995.
Texte intégralLiu, Yang. « Synthesis and Characterization of Nanocrystals and Nanoparticles ». Dans Semiconductor Nanocrystals and Metal Nanoparticles, 1–38. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-2.
Texte intégralThomas, P. John, Oliver L. Armstrong et Sean N. Baxter. « Advances in Synthesis of Metal Nanocrystals ». Dans Metal Nanoparticles and Clusters, 31–54. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68053-8_2.
Texte intégralKorotcenkov, Ghenadii, et Igor A. Pronin. « Synthesis of II-VI Semiconductor Nanocrystals ». Dans Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors, 277–323. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19531-0_11.
Texte intégralActes de conférences sur le sujet "Nanocrystals Synthesis"
RAZUMOV, V., et S. BRICHKIN. « MICELLAR SYNTHESIS OF NANOCRYSTALS ». Dans Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0064.
Texte intégralBastus, Neus, Jordi Piella, Carmen Hervés, Elizaveta Demakova, Jana Oliveras, Oscar Moriones et Victor Puntes. « Colloidal Synthesis of Complex Multicomponent Inorganic Nanocrystals ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.049.
Texte intégralCalcabrini, Mariano, Jordi Lorca, Jonathan De Roo et Maria Ibáñez. « Unexpected ligand transformation in metal oxide nanocrystals synthesis ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.036.
Texte intégralShcheglov, K. V., C. M. Yang et H. A. Atwater. « Photoluminescence and Electroluminescence of Ge-Implanted Si/SiO2/Si Structures ». Dans Microphysics of Surfaces : Nanoscale Processing. Washington, D.C. : Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.msab3.
Texte intégralBlanton, Sean A., Ahmad Dehestani, Peter C. Lin et Philippe Guyot-Sionnest. « Single Nanocrystal Spectroscopy by Two Photon Excitation ». Dans Microphysics of Surfaces : Nanoscale Processing. Washington, D.C. : Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.msaa4.
Texte intégralAkylbekova, A., A. Dauletbekova, Z. Baymukhanov, A. Kozlovsky et A. Usseinov. « Template synthesis of ZnSe2O5 nanocrystals ». Dans PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019) : Proceedings of the VI International Young Researchers’ Conference. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134152.
Texte intégralKarpovich, Natalia F., Ilya V. Korolkov, Konstantin S. Makarevich, Maxim A. Pugachevsky, Dmitry S. Shtarev, Alexander V. Syuy et Victor V. Atuchin. « Hydrothermal synthesis of anatase nanocrystals ». Dans 2012 IEEE 13th International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM 2012). IEEE, 2012. http://dx.doi.org/10.1109/edm.2012.6310181.
Texte intégralWeller, Horst Weller. « Synthesis, Properties and Applications of Nanocrystals in Materials and Life Sciences ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.060.
Texte intégralHill, Eric. « Synthesis of Semiconductors Confined in Nanoscopic Colloidal Templates toward Heterostructured Nanomaterials ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.008.
Texte intégralOliveras, Jana, Neus Bastús et Víctor Puntes. « SYNTHESIS AND APPLICATION STUDY OF Fe3O4/GRAPHENE HYBRID FOR WATER REMEDIATION ». Dans Internet NanoGe Conference on Nanocrystals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.022.
Texte intégralRapports d'organisations sur le sujet "Nanocrystals Synthesis"
Dinh, L. N., T. Trelenberg, B. Torralva, B. C. Stuart et M. Balooch. Femtosecond Laser Synthesis of Multi-Element Nanocrystals. Office of Scientific and Technical Information (OSTI), janvier 2003. http://dx.doi.org/10.2172/15006361.
Texte intégralChan, Emory Ming-Yue. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors. Office of Scientific and Technical Information (OSTI), janvier 2006. http://dx.doi.org/10.2172/926707.
Texte intégralWhite, C. W., J. D. Budai et A. L. Meldrum. Ion beam synthesis of CdS, ZnS, and PbS compound semiconductor nanocrystals. Office of Scientific and Technical Information (OSTI), décembre 1997. http://dx.doi.org/10.2172/564245.
Texte intégralBudai, J. D., C. W. White, S. P. Withrow, R. A. Zuhr et J. G. Zhu. Synthesis, optical properties, and microstructure of semiconductor nanocrystals formed by ion implantation. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/425296.
Texte intégralPerepezko, J. H. High Temperature AL-Nanocrystal Alloy Synthesis. Fort Belvoir, VA : Defense Technical Information Center, janvier 2001. http://dx.doi.org/10.21236/ada391741.
Texte intégralLiu, Haitao. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis. Office of Scientific and Technical Information (OSTI), mai 2007. http://dx.doi.org/10.2172/918668.
Texte intégral