Littérature scientifique sur le sujet « Network thermodynamics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Network thermodynamics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Network thermodynamics"
Wampler, Taylor, et Andre C. Barato. « Skewness and kurtosis in stochastic thermodynamics ». Journal of Physics A : Mathematical and Theoretical 55, no 1 (9 décembre 2021) : 014002. http://dx.doi.org/10.1088/1751-8121/ac3b0c.
Texte intégralTasnim, Farita, et David H. Wolpert. « Stochastic Thermodynamics of Multiple Co-Evolving Systems—Beyond Multipartite Processes ». Entropy 25, no 7 (17 juillet 2023) : 1078. http://dx.doi.org/10.3390/e25071078.
Texte intégralBorlenghi, Simone, et Anna Delin. « Stochastic Thermodynamics of Oscillators’ Networks ». Entropy 20, no 12 (19 décembre 2018) : 992. http://dx.doi.org/10.3390/e20120992.
Texte intégralLewis, Edwin R. « Network thermodynamics revisited ». Biosystems 34, no 1-3 (1995) : 47–63. http://dx.doi.org/10.1016/0303-2647(94)01456-h.
Texte intégralŠesták, Jaroslav. « Studies in network thermodynamics ». Thermochimica Acta 108 (novembre 1986) : 393. http://dx.doi.org/10.1016/0040-6031(86)85106-1.
Texte intégralMatsoukas, Themis. « Thermodynamics Beyond Molecules : Statistical Thermodynamics of Probability Distributions ». Entropy 21, no 9 (13 septembre 2019) : 890. http://dx.doi.org/10.3390/e21090890.
Texte intégralDu, Bin, Daniel C. Zielinski, Jonathan M. Monk et Bernhard O. Palsson. « Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice ». Proceedings of the National Academy of Sciences 115, no 44 (11 octobre 2018) : 11339–44. http://dx.doi.org/10.1073/pnas.1805367115.
Texte intégralReichl, L. E. « Book review:Studies in network thermodynamics ». Journal of Statistical Physics 50, no 1-2 (janvier 1988) : 465. http://dx.doi.org/10.1007/bf01023005.
Texte intégralZhang, Mingjin, Peng Zhang, Yuhan Zhang, Minghai Yang, Xiaofeng Li, Xiaogang Dong et Luchang Yang. « SAR-to-Optical Image Translation via an Interpretable Network ». Remote Sensing 16, no 2 (8 janvier 2024) : 242. http://dx.doi.org/10.3390/rs16020242.
Texte intégralKeegan, Michael, Hava T. Siegelmann, Edward A. Rietman, Giannoula Lakka Klement et Jack A. Tuszynski. « Gibbs Free Energy, a Thermodynamic Measure of Protein–Protein Interactions, Correlates with Neurologic Disability ». BioMedInformatics 1, no 3 (14 décembre 2021) : 201–10. http://dx.doi.org/10.3390/biomedinformatics1030013.
Texte intégralThèses sur le sujet "Network thermodynamics"
Squadrani, Lorenzo. « Deep neural networks and thermodynamics ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Trouver le texte intégralPierantozzi, Mariano. « Mathematical modeling for Thermodynamics : Thermophysical Properties and Equation of State ». Doctoral thesis, Università Politecnica delle Marche, 2015. http://hdl.handle.net/11566/242931.
Texte intégralAbstract In the modern multicultural and multidisciplinary society, always adopting more and more wider prospective than before. In this thesis, we try to adopt a multidisciplinary method, which involves Mathematics, Physics, but also Chemistry, Statistics, and in general the scientific engineering. The aspects explained are thermo physical properties, and Equations of State (EOS) of gases. Regarding thermo physical properties have been analysed Surface Tension, Thermal Conductivity, Viscosity, and the second virial coefficient. On this arguments, the work had been subdivided between the gathering of experimental data, the analysing of data with statistical techniques transforming them to more reliable data than row. The second step was to collect the equations of literature. Then we went ahead studying the sensibility of data to find out which physical properties could have bigger impact to property examined. At the end, we looked for an equation that could represent experimental data in a better way. We always preferred the scaled equations that respect chemical and physical aspects, to the empirical ones. Comparing our results with better equations in literature, our results are always better, in fact all of the have been published in the best international journals on this subject. A separate discussion is that of EOS. Analyzing the previous literature, the first thing that came to our minds was that to find the best possible equation is impossible. Or as Martin wrote copying words of the famous fables Snow White: “Mirror mirror on the wall, who is the fairest of them all?”. We choose to modify The Carnahan-Starling-De Santis (CSD) equation of state, a parametrich equation with good results in the calculation of Vapor Liquid Equilibrium. Due to multi objective minimization techniques the performance of CSD has been improved. These are the principals aspect brought to light in this research, which apart from the results, with good results has opened to me the world of research.
Ozaki, Hiroto. « Study of Network Structures and Rheological Properties of Physical Gels ». Kyoto University, 2017. http://hdl.handle.net/2433/227633.
Texte intégralLoutchko, Dimitri. « A Theoretical Study of the Tryptophan Synthase Enzyme Reaction Network ». Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19384.
Texte intégralThe channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical nanomachine with two distinct catalytic subunits. It catalyzes the biosynthesis of tryptophan, whereby the catalytic activity in a subunit is enhanced or inhibited depending on the state of the other subunit, gates control the accessibility of the reactive sites and the intermediate product indole is directly channeled within the protein. The first single-molecule kinetic model of the enzyme is constructed. Simulations reveal strong correlations in the states of the active centers and the emergent synchronization. Thermodynamic data is used to calculate the rate constant for the reverse indole channeling. Using the fully reversible single-molecule model, the stochastic thermodynamics of the enzyme is closely examined. The current methods describing information exchange in bipartite systems are extended to arbitrary Markov networks and applied to the kinetic model. They allow the characterization of the information exchange between the subunits resulting from allosteric cross-regulations and channeling. The final part of this work is focused on chemical reaction networks of metabolites and enzymes. Algebraic semigroup models are constructed based on a formalism that emphasizes the catalytic function of reactants within the network. A correspondence between coarse-graining procedures and semigroup congruences respecting the functional structure is established. A family of congruences that leads to a rather unusual coarse-graining is analyzed: The network is covered with local patches in a way that the local information on the network is fully retained, but the environment of each patch is not resolved. Whereas classical coarse-graining procedures would fix a particular patch and delete information about the environment, the algebraic approach keeps the structure of all local patches and allows the interaction of functions within distinct patches.
Hui, Qing. « Nonlinear dynamical systems and control for large-scale, hybrid, and network systems ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Texte intégralCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Grondin, Yohann. « Biological networks : a thermodynamical approach ». Thesis, University of Leicester, 2006. http://hdl.handle.net/2381/30584.
Texte intégralKotjabasakis, E. « Design of flexible heat exchanger networks ». Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235140.
Texte intégralGarcia, Cantu Ros Anselmo. « Thermodynamic and kinetic aspects of interaction networks ». Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210420.
Texte intégral
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Honorato-Zimmer, Ricardo. « On a thermodynamic approach to biomolecular interaction networks ». Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28904.
Texte intégralJones, Paul Simon. « Targeting and design for heat exchanger networks under multiple base case operation ». Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292518.
Texte intégralLivres sur le sujet "Network thermodynamics"
Peusner, Leonardo. Studies in network thermodynamics. Amsterdam : Elsevier, 1986.
Trouver le texte intégralGermany) Minisymposium on Thermodynamics of Surfaces (1995 Berlin. Thermodynamics of surfaces : Minisymposium, May 11-13, 1995 : European Thermodynamics Network, thermodynamics of complex systems. Berlin : Technische Universität Berlin, 1996.
Trouver le texte intégralPeusner, L. The principles of network thermodynamics : Theory and biophysical applications. Lincoln, Mass : Entropy Ltd., 1987.
Trouver le texte intégralPiotrowska, Ewa. Zastępcza sieć cieplna wymiennika ciepła pracującego w stanach przejściowych : The equivalent thermal network for heat exchanger working in the transient states. Warszawa : Wydawnictwo SGGW, 2013.
Trouver le texte intégralMeeting, American Society of Mechanical Engineers Winter. Network thermodynamics, heat and mass transfer in biotechnology : Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987 : sponsored by the Bioengineering Division, ASME, the Heat Transfer Division, ASME. New York : American Society of Mechanical Engineers, 1987.
Trouver le texte intégralAmerican Society of Mechanical Engineers. Winter Meeting. Network thermodynamics, heat and mass transfer in biotechnology : Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987. New York, N.Y. (345 E. 47th St., New York 10017) : ASME, 1987.
Trouver le texte intégralBejan, Adrian, et Giuseppe Grazzini, dir. Shape and Thermodynamics. Florence : Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-836-9.
Texte intégralIto, Sosuke. Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1664-6.
Texte intégralMüller, Berndt. Neural networks : An introduction. 2e éd. Berlin : Springer-Verlag, 1991.
Trouver le texte intégralMüller, Berndt. Neural networks : An introduction. 2e éd. Berlin : Springer, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Network thermodynamics"
Imai, Y. « Graded Modelling of Exocrine Secretion Using Network Thermodynamics ». Dans Epithelial Secretion of Water and Electrolytes, 129–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75033-5_9.
Texte intégralGordon, Manfred. « Thermodynamics of Casein Gels and the Universality of Network Theories ». Dans Integration of Fundamental Polymer Science and Technology, 167–76. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4185-4_22.
Texte intégralHaddad, Wassim M. « The Role of Systems Biology, Neuroscience, and Thermodynamics in Network Control and Learning ». Dans Handbook of Reinforcement Learning and Control, 763–817. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60990-0_25.
Texte intégralDoty, David, Trent A. Rogers, David Soloveichik, Chris Thachuk et Damien Woods. « Thermodynamic Binding Networks ». Dans Lecture Notes in Computer Science, 249–66. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66799-7_16.
Texte intégralFeinberg, Martin. « Quasi-Thermodynamic Kinetic Systems ». Dans Foundations of Chemical Reaction Network Theory, 273–91. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03858-8_13.
Texte intégralUtracki, L. A. « Thermodynamics and Kinetics of Phase Separation ». Dans Interpenetrating Polymer Networks, 77–123. Washington, DC : American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch003.
Texte intégralIto, Sosuke. « Information Thermodynamics on Causal Networks ». Dans Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction, 61–82. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1664-6_6.
Texte intégralRostiashvili, V. G., et T. A. Vilgis. « Statistical Thermodynamics of Polymeric Networks ». Dans Encyclopedia of Polymeric Nanomaterials, 1–18. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_308-1.
Texte intégralRostiashvili, V. G., et T. A. Vilgis. « Statistical Thermodynamics of Polymeric Networks ». Dans Encyclopedia of Polymeric Nanomaterials, 2254–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_308.
Texte intégralYe, Cheng, Andrea Torsello, Richard C. Wilson et Edwin R. Hancock. « Thermodynamics of Time Evolving Networks ». Dans Graph-Based Representations in Pattern Recognition, 315–24. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_31.
Texte intégralActes de conférences sur le sujet "Network thermodynamics"
Pavlović, Marina Simović, Maja Pagnacco, Bojana Bokić, Darko Vasiljević, Marija Radmilović-Rađenović, Branislav Rađenović et Branko Kolarić. « Breaking Barriers : Molding Thermodynamics by Geometry of Nanostructures ». Dans 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648049.
Texte intégralZitelli, Mario. « A Thermodynamic Study of Low-power Modal Multiplexed Systems ». Dans 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647332.
Texte intégralKiritsis, E., et T. Taylor. « Thermodynamics of D-brane probes ». Dans European Network on Physics beyond the Standard Model. Trieste, Italy : Sissa Medialab, 1999. http://dx.doi.org/10.22323/1.002.0027.
Texte intégralTaliaferro, Matthew E., et Samuel R. Darr. « Modeling Internal Launch Vehicle Fluid Flow and Thermodynamics, Part 1 : Thermodynamic Tank Network Solver ». Dans AIAA SCITECH 2024 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-2293.
Texte intégralGaymann, Audrey, Giorgio Schiaffini, Michela Massini, Francesco Montomoli et Alessandro Corsini. « Neural network topology for wind turbine analysis ». Dans European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. European Turbomachinery Society, 2019. http://dx.doi.org/10.29008/etc2019-174.
Texte intégralPothineni, Dinesh, Pratik Mishra et Aadil Rasheed. « Social thermodynamics : Modelling communication dynamics in social network ». Dans 2012 International Conference on Future Generation Communication Technology (FGCT). IEEE, 2012. http://dx.doi.org/10.1109/fgct.2012.6476582.
Texte intégralBerg, Jordan M., D. H. S. Maithripala, Qing Hui et Wassim M. Haddad. « Thermodynamics-based network systems control by thermal analogy ». Dans 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426012.
Texte intégralChen, Ruijun. « The Network Locating Principle in Flexible Circuit Board Assembly ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10305.
Texte intégralLayton, Astrid, John Reap et Bert Bras. « A Correlation Between Thermal Efficiency and Biological Network Cyclicity ». Dans ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54787.
Texte intégralIwai, Takuya, Daichi Kominami, Masayuki Murata et Tetsuya Yomo. « Thermodynamics-Based Entropy Adjustment for Robust Self-Organized Network Controls ». Dans 2014 IEEE 38th Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2014. http://dx.doi.org/10.1109/compsac.2014.48.
Texte intégralRapports d'organisations sur le sujet "Network thermodynamics"
Haddad, Wassim M. Complexity, Robustness, and Network Thermodynamics in Large-Scale and Multiagent Systems : A Hybrid Control Approach. Fort Belvoir, VA : Defense Technical Information Center, janvier 2012. http://dx.doi.org/10.21236/ada565203.
Texte intégralTse, David, Piyush Gupta et Devavrat Shah. Thermodynamics of Large-Scale Heterogeneous Wireless Networks. Fort Belvoir, VA : Defense Technical Information Center, mars 2014. http://dx.doi.org/10.21236/ada601231.
Texte intégralSteele, W. V., R. D. Chirico, S. E. Knipmeyer et A. Nguyen. The thermodynamic properties of 2-aminobiphenyl (an intermediate in the carbazole/hydrogen reaction network). Office of Scientific and Technical Information (OSTI), décembre 1990. http://dx.doi.org/10.2172/6307021.
Texte intégralHaddad, Wassim M., et Quirino Balzano. A Network Thermodynamic Framework for the Analysis and Control Design of Large-Scale Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, mars 2006. http://dx.doi.org/10.21236/ada448643.
Texte intégralPerdigão, Rui A. P. Strengthening Multi-Hazard Resilience with Quantum Aerospace Systems Intelligence. Synergistic Manifolds, janvier 2024. http://dx.doi.org/10.46337/240301.
Texte intégralMcKinley, James P., et Jonathan Istok. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation : Development and Testing of a Thermodynamic Network Model. Office of Scientific and Technical Information (OSTI), juin 2005. http://dx.doi.org/10.2172/893451.
Texte intégralMcKinley, James P., Chongxuan Liu, Jack Istok et Lee Krumholz. Stability of U(VI)- and Tc(VII) reducing microbial communities to environmental perturbation : a thermodynamic network model and intermediate-scale experiments. Office of Scientific and Technical Information (OSTI), juin 2006. http://dx.doi.org/10.2172/895882.
Texte intégralPerdigão, Rui A. P. Neuro-Quantum Cyber-Physical Intelligence (NQCPI). Synergistic Manifolds, octobre 2024. http://dx.doi.org/10.46337/241024.
Texte intégral