Articles de revues sur le sujet « Neuromorphic devices »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Neuromorphic devices ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Ielmini, Daniele, and Stefano Ambrogio. "Emerging neuromorphic devices." Nanotechnology 31, no. 9 (2019): 092001. http://dx.doi.org/10.1088/1361-6528/ab554b.
Texte intégralGuo, Zhonghao. "Synaptic device-based neuromorphic computing in artificial intelligence." Applied and Computational Engineering 65, no. 1 (2024): 253–59. http://dx.doi.org/10.54254/2755-2721/65/20240511.
Texte intégralPark, Jisoo, Jihyun Shin, and Hocheon Yoo. "Heterostructure-Based Optoelectronic Neuromorphic Devices." Electronics 13, no. 6 (2024): 1076. http://dx.doi.org/10.3390/electronics13061076.
Texte intégralHuang, Wen, Huixing Zhang, Zhengjian Lin, Pengjie Hang, and Xing’ao Li. "Transistor-Based Synaptic Devices for Neuromorphic Computing." Crystals 14, no. 1 (2024): 69. http://dx.doi.org/10.3390/cryst14010069.
Texte intégralLim, Jung Wook, Su Jae Heo, Min A. Park, and Jieun Kim. "Synaptic Transistors Exhibiting Gate-Pulse-Driven, Metal-Semiconductor Transition of Conduction." Materials 14, no. 24 (2021): 7508. http://dx.doi.org/10.3390/ma14247508.
Texte intégralDiao, Yu, Yaoxuan Zhang, Yanran Li, and Jie Jiang. "Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications." Sensors 23, no. 24 (2023): 9779. http://dx.doi.org/10.3390/s23249779.
Texte intégralFeng, Chenyin, Wenwei Wu, Huidi Liu, et al. "Emerging Opportunities for 2D Materials in Neuromorphic Computing." Nanomaterials 13, no. 19 (2023): 2720. http://dx.doi.org/10.3390/nano13192720.
Texte intégralKim, Dongshin, Ik-Jyae Kim, and Jang-Sik Lee. "Memory Devices for Flexible and Neuromorphic Device Applications." Advanced Intelligent Systems 3, no. 5 (2021): 2000206. http://dx.doi.org/10.1002/aisy.202000206.
Texte intégralHuang, Yi, Fatemeh Kiani, Fan Ye, and Qiangfei Xia. "From memristive devices to neuromorphic systems." Applied Physics Letters 122, no. 11 (2023): 110501. http://dx.doi.org/10.1063/5.0133044.
Texte intégralMachado, Pau, Salvador Manich, Álvaro Gómez-Pau, et al. "Programming Techniques of Resistive Random-Access Memory Devices for Neuromorphic Computing." Electronics 12, no. 23 (2023): 4803. http://dx.doi.org/10.3390/electronics12234803.
Texte intégralGumyusenge, Aristide, Armantas Melianas, Scott T. Keene, and Alberto Salleo. "Materials Strategies for Organic Neuromorphic Devices." Annual Review of Materials Research 51, no. 1 (2021): 47–71. http://dx.doi.org/10.1146/annurev-matsci-080619-111402.
Texte intégralMilo, Valerio, Gerardo Malavena, Christian Monzio Compagnoni, and Daniele Ielmini. "Memristive and CMOS Devices for Neuromorphic Computing." Materials 13, no. 1 (2020): 166. http://dx.doi.org/10.3390/ma13010166.
Texte intégralWu, Yuting, Xinxin Wang, and Wei D. Lu. "Dynamic resistive switching devices for neuromorphic computing." Semiconductor Science and Technology 37, no. 2 (2021): 024003. http://dx.doi.org/10.1088/1361-6641/ac41e4.
Texte intégralYou Zhou and Shriram Ramanathan. "Mott Memory and Neuromorphic Devices." Proceedings of the IEEE 103, no. 8 (2015): 1289–310. http://dx.doi.org/10.1109/jproc.2015.2431914.
Texte intégralZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae, and Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing." ECS Meeting Abstracts MA2022-02, no. 32 (2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Texte intégralYan, Yujie, Xiaomin Wu, Qizhen Chen, et al. "An intrinsically healing artificial neuromorphic device." Journal of Materials Chemistry C 8, no. 20 (2020): 6869–76. http://dx.doi.org/10.1039/d0tc00726a.
Texte intégralJué, Emilie, Matthew R. Pufall, Ian W. Haygood, William H. Rippard, and Michael L. Schneider. "Perspectives on nanoclustered magnetic Josephson junctions as artificial synapses." Applied Physics Letters 121, no. 24 (2022): 240501. http://dx.doi.org/10.1063/5.0118287.
Texte intégralLin, Xinhuang, Haotian Long, Shuo Ke, et al. "Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding." Chinese Physics Letters 39, no. 6 (2022): 068501. http://dx.doi.org/10.1088/0256-307x/39/6/068501.
Texte intégralLee, Jae-Eun, Chuljun Lee, Dong-Wook Kim, Daeseok Lee, and Young-Ho Seo. "An On-Chip Learning Method for Neuromorphic Systems Based on Non-Ideal Synapse Devices." Electronics 9, no. 11 (2020): 1946. http://dx.doi.org/10.3390/electronics9111946.
Texte intégralChen, Chao, Tao Lin, Jianteng Niu, et al. "Surface acoustic wave controlled skyrmion-based synapse devices." Nanotechnology 33, no. 11 (2021): 115205. http://dx.doi.org/10.1088/1361-6528/ac3f14.
Texte intégralGonzález Sopeña, Juan Manuel, Vikram Pakrashi, and Bidisha Ghosh. "A Spiking Neural Network Based Wind Power Forecasting Model for Neuromorphic Devices." Energies 15, no. 19 (2022): 7256. http://dx.doi.org/10.3390/en15197256.
Texte intégralPark, Jaeyoung. "Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook." Electronics 9, no. 9 (2020): 1414. http://dx.doi.org/10.3390/electronics9091414.
Texte intégralChen, An, Stefano Ambrogio, Pritish Narayanan, et al. "(Invited) Emerging Nonvolatile Memories for Analog Neuromorphic Computing." ECS Meeting Abstracts MA2024-01, no. 21 (2024): 1293. http://dx.doi.org/10.1149/ma2024-01211293mtgabs.
Texte intégralAlialy, Sahar, Koorosh Esteki, Mauro S. Ferreira, John J. Boland, and Claudia Gomes da Rocha. "Nonlinear ion drift-diffusion memristance description of TiO2 RRAM devices." Nanoscale Advances 2, no. 6 (2020): 2514–24. http://dx.doi.org/10.1039/d0na00195c.
Texte intégralLi, Bo, and Guoyong Shi. "A Native SPICE Implementation of Memristor Models for Simulation of Neuromorphic Analog Signal Processing Circuits." ACM Transactions on Design Automation of Electronic Systems 27, no. 1 (2022): 1–24. http://dx.doi.org/10.1145/3474364.
Texte intégralLi, Tongxuan. "Neuromorphic Devices Based on Two-Dimensional Materials and Their Applications." Highlights in Science, Engineering and Technology 87 (March 26, 2024): 186–91. http://dx.doi.org/10.54097/kxsmsn90.
Texte intégralHo, Tsz-Lung, Keda Ding, Nikolay Lyapunov, et al. "Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device." Nanomaterials 12, no. 13 (2022): 2128. http://dx.doi.org/10.3390/nano12132128.
Texte intégralYOON, Tae-Sik. "Artificial Synaptic Devices for Neuromorphic Systems." Physics and High Technology 28, no. 4 (2019): 3–8. http://dx.doi.org/10.3938/phit.28.011.
Texte intégralLiu, Yi-Chun, Ya Lin, Zhong-Qiang Wang, and Hai-Yang Xu. "Oxide-based memristive neuromorphic synaptic devices." Acta Physica Sinica 68, no. 16 (2019): 168504. http://dx.doi.org/10.7498/aps.68.20191262.
Texte intégralGuo, Yan-Bo, and Li-Qiang Zhu. "Recent progress in optoelectronic neuromorphic devices." Chinese Physics B 29, no. 7 (2020): 078502. http://dx.doi.org/10.1088/1674-1056/ab99b6.
Texte intégralChang, Ting, Yuchao Yang, and Wei Lu. "Building Neuromorphic Circuits with Memristive Devices." IEEE Circuits and Systems Magazine 13, no. 2 (2013): 56–73. http://dx.doi.org/10.1109/mcas.2013.2256260.
Texte intégralLiu, Chang, Ru Huang, Yanghao Wang, and Yuchao Yang. "Progresses and outlook in neuromorphic devices." Chinese Science Bulletin 65, no. 10 (2019): 904–15. http://dx.doi.org/10.1360/tb-2019-0739.
Texte intégralSun, Jia, Ying Fu, and Qing Wan. "Organic synaptic devices for neuromorphic systems." Journal of Physics D: Applied Physics 51, no. 31 (2018): 314004. http://dx.doi.org/10.1088/1361-6463/aacd99.
Texte intégralZhu, Yixin, Huiwu Mao, Ying Zhu, et al. "CMOS-Compatible Neuromorphic Devices for Neuromorphic Perception and Computing: A Review." International Journal of Extreme Manufacturing, August 11, 2023. http://dx.doi.org/10.1088/2631-7990/acef79.
Texte intégralHuang, Zhuohui, Yanran Li, Yi Zhang, Jiewei Chen, Jun He, and Jie Jiang. "2D Multifunctional Devices: from Material Preparation to Device Fabrication and Neuromorphic Applications." International Journal of Extreme Manufacturing, February 28, 2024. http://dx.doi.org/10.1088/2631-7990/ad2e13.
Texte intégralShen Liu-feng, Hu Ling-xiang, Kang Feng-wen, Ye Yu-min, and Zhuge Fei. "Optoelectronic neuromorphic devices and their applications." Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220111.
Texte intégralLong, Yan, Xiang Chen, Xiaoxin Pan, et al. "Memristor Constructed by CsPbIBr2 inorganic halide perovskite for Artificial Synapse and Logic Operation." physica status solidi (RRL) – Rapid Research Letters, October 31, 2023. http://dx.doi.org/10.1002/pssr.202300342.
Texte intégralZhong, Hai, Kuijuan Jin, and Chen Ge. "Hafnia-based neuromorphic devices." Applied Physics Letters 125, no. 15 (2024). http://dx.doi.org/10.1063/5.0226206.
Texte intégralShim, Hyunseok, Seonmin Jang, Anish Thukral, et al. "Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors." Proceedings of the National Academy of Sciences 119, no. 23 (2022). http://dx.doi.org/10.1073/pnas.2204852119.
Texte intégralZhang, Zirui, Dongliang Yang, Huihan Li, et al. "2D materials and van der Waals heterojunctions for neuromorphic computing." Neuromorphic Computing and Engineering, August 17, 2022. http://dx.doi.org/10.1088/2634-4386/ac8a6a.
Texte intégralHu, Lingxiang, Xia Zhuge, Jingrui Wang, et al. "Emerging Optoelectronic Devices for Brain‐Inspired Computing." Advanced Electronic Materials, September 9, 2024. http://dx.doi.org/10.1002/aelm.202400482.
Texte intégralChen, H. J., C. C. Chiang, C. Y. Cheng, D. Qu, and S. Y. Huang. "Neuromorphic computing devices based on the asymmetric temperature gradient." Applied Physics Letters 122, no. 26 (2023). http://dx.doi.org/10.1063/5.0155229.
Texte intégralSun, Yilin, Huaipeng Wang, and Dan Xie. "Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications." Nano-Micro Letters 16, no. 1 (2024). http://dx.doi.org/10.1007/s40820-024-01445-x.
Texte intégralGao, Changsong, Di Liu, Chenhui Xu, et al. "Feedforward Photoadaptive Organic Neuromorphic Transistor with Mixed‐Weight Plasticity for Augmenting Perception." Advanced Functional Materials, January 23, 2024. http://dx.doi.org/10.1002/adfm.202313217.
Texte intégralGärisch, Fabian, Vincent Schröder, Emil J. W. List‐Kratochvil, and Giovanni Ligorio. "Scalable Fabrication of Neuromorphic Devices Using Inkjet Printing for the Deposition of Organic Mixed Ionic‐Electronic Conductor." Advanced Electronic Materials, November 3, 2024. http://dx.doi.org/10.1002/aelm.202400479.
Texte intégralJiang Zi-Han, Ke Shuo, Zhu Ying, et al. "Flexible neuromorphic transistors for bio-inspired perception application." Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220308.
Texte intégralLu, Guangming, and Ekhard K. H. Salje. "Multiferroic neuromorphic computation devices." APL Materials 12, no. 6 (2024). http://dx.doi.org/10.1063/5.0216849.
Texte intégralPati, Satya Prakash, and Takeaki Yajima. "Review of solid-state proton devices for neuromorphic information processing." Japanese Journal of Applied Physics, February 14, 2024. http://dx.doi.org/10.35848/1347-4065/ad297b.
Texte intégralJu, Dongyeol, Jungwoo Lee, and Sungjun Kim. "Nociceptor‐Enhanced Spike‐Timing‐Dependent Plasticity in Memristor with Coexistence of Filamentary and Non‐Filamentary Switching." Advanced Materials Technologies, May 19, 2024. http://dx.doi.org/10.1002/admt.202400440.
Texte intégralLin, Xiangde, Zhenyu Feng, Yao Xiong, et al. "Piezotronic Neuromorphic Devices: Principle, Manufacture, and Applications." International Journal of Extreme Manufacturing, March 13, 2024. http://dx.doi.org/10.1088/2631-7990/ad339b.
Texte intégral