Articles de revues sur le sujet « Neuroni corticali »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Neuroni corticali ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Masuda, Naoki, and Kazuyuki Aihara. "Spatiotemporal Spike Encoding of a Continuous External Signal." Neural Computation 14, no. 7 (2002): 1599–628. http://dx.doi.org/10.1162/08997660260028638.
Texte intégralZhou, Xiaoming, and Philip H. S. Jen. "Corticofugal Modulation of Multi-Parametric Auditory Selectivity in the Midbrain of the Big Brown Bat." Journal of Neurophysiology 98, no. 5 (2007): 2509–16. http://dx.doi.org/10.1152/jn.00613.2007.
Texte intégralWright, Nathaniel C., Mahmood S. Hoseini, Tansel Baran Yasar, and Ralf Wessel. "Coupling of synaptic inputs to local cortical activity differs among neurons and adapts after stimulus onset." Journal of Neurophysiology 118, no. 6 (2017): 3345–59. http://dx.doi.org/10.1152/jn.00398.2017.
Texte intégralAlloway, K. D., M. J. Johnson, and M. B. Wallace. "Thalamocortical interactions in the somatosensory system: interpretations of latency and cross-correlation analyses." Journal of Neurophysiology 70, no. 3 (1993): 892–908. http://dx.doi.org/10.1152/jn.1993.70.3.892.
Texte intégralYamamoto, T., N. Yuyama, T. Kato, and Y. Kawamura. "Gustatory responses of cortical neurons in rats. II. Information processing of taste quality." Journal of Neurophysiology 53, no. 6 (1985): 1356–69. http://dx.doi.org/10.1152/jn.1985.53.6.1356.
Texte intégralShinomoto, Shigeru, Keisetsu Shima, and Jun Tanji. "Differences in Spiking Patterns Among Cortical Neurons." Neural Computation 15, no. 12 (2003): 2823–42. http://dx.doi.org/10.1162/089976603322518759.
Texte intégralUnda, Brianna K., Vickie Kwan, and Karun K. Singh. "Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1." Neural Plasticity 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/7694385.
Texte intégralDoll, C. J., P. W. Hochachka, and P. B. Reiner. "Effects of anoxia and metabolic arrest on turtle and rat cortical neurons." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 260, no. 4 (1991): R747—R755. http://dx.doi.org/10.1152/ajpregu.1991.260.4.r747.
Texte intégralCollins, Christine E., Emily C. Turner, Eva Kille Sawyer, et al. "Cortical cell and neuron density estimates in one chimpanzee hemisphere." Proceedings of the National Academy of Sciences 113, no. 3 (2016): 740–45. http://dx.doi.org/10.1073/pnas.1524208113.
Texte intégralMurray, Peter D., and Asaf Keller. "Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex." Journal of Neurophysiology 106, no. 3 (2011): 1355–62. http://dx.doi.org/10.1152/jn.01089.2010.
Texte intégralLytton, William W., Diego Contreras, Alain Destexhe, and Mircea Steriade. "Dynamic Interactions Determine Partial Thalamic Quiescence in a Computer Network Model of Spike-and-Wave Seizures." Journal of Neurophysiology 77, no. 4 (1997): 1679–96. http://dx.doi.org/10.1152/jn.1997.77.4.1679.
Texte intégralAldohbeyb, Ahmed A., and Ahmad O. Alokaily. "Cortical Neurons Adjust the Action Potential Onset Features as a Function of Stimulus Type." Applied Sciences 13, no. 18 (2023): 10158. http://dx.doi.org/10.3390/app131810158.
Texte intégralSuri, Roland E., and Wolfram Schultz. "Temporal Difference Model Reproduces Anticipatory Neural Activity." Neural Computation 13, no. 4 (2001): 841–62. http://dx.doi.org/10.1162/089976601300014376.
Texte intégralReyes, Laura D., Tessa Harland, Roger L. Reep, Chet C. Sherwood, and Bob Jacobs. "Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris)." Brain, Behavior and Evolution 87, no. 2 (2016): 105–16. http://dx.doi.org/10.1159/000445495.
Texte intégralTurner, Emily C., Nicole A. Young, Jamie L. Reed, et al. "Distributions of Cells and Neurons across the Cortical Sheet in Old World Macaques." Brain, Behavior and Evolution 88, no. 1 (2016): 1–13. http://dx.doi.org/10.1159/000446762.
Texte intégralShoykhet, Michael, and Daniel J. Simons. "Development of Thalamocortical Response Transformations in the Rat Whisker-Barrel System." Journal of Neurophysiology 99, no. 1 (2008): 356–66. http://dx.doi.org/10.1152/jn.01063.2007.
Texte intégralWu, Erxi, Dan Qi, Damir Nizamutdinov, and Jason H. Huang. "Astrocytic calcium waves: unveiling their roles in sleep and arousal modulation." Neural Regeneration Research 19, no. 5 (2023): 984–87. http://dx.doi.org/10.4103/1673-5374.385287.
Texte intégralShinomoto, Shigeru, Youichi Miyazaki, Hiroshi Tamura, and Ichiro Fujita. "Regional and Laminar Differences in In Vivo Firing Patterns of Primate Cortical Neurons." Journal of Neurophysiology 94, no. 1 (2005): 567–75. http://dx.doi.org/10.1152/jn.00896.2004.
Texte intégralJohnson, M. J., and K. D. Alloway. "Cross-correlation analysis reveals laminar differences in thalamocortical interactions in the somatosensory system." Journal of Neurophysiology 75, no. 4 (1996): 1444–57. http://dx.doi.org/10.1152/jn.1996.75.4.1444.
Texte intégralKarnani, Mahesh M., and Jesse Jackson. "Interneuron Cooperativity in Cortical Circuits." Neuroscientist 24, no. 4 (2017): 329–41. http://dx.doi.org/10.1177/1073858417733719.
Texte intégralYu, Huan-Ling, Li Li, Xiao-Hong Zhang та ін. "Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by β-amyloid 31-35". British Journal of Nutrition 102, № 5 (2009): 655–62. http://dx.doi.org/10.1017/s0007114509243042.
Texte intégralTsubomoto, Makoto, Rika Kawabata, Xiaonan Zhu, et al. "Expression of Transcripts Selective for GABA Neuron Subpopulations across the Cortical Visuospatial Working Memory Network in the Healthy State and Schizophrenia." Cerebral Cortex 29, no. 8 (2018): 3540–50. http://dx.doi.org/10.1093/cercor/bhy227.
Texte intégralMadsen, Jesper Guldsmed, Jakob Appel Østergaard, Henning Andersen, and Michael Pedersen. "Attenuation of Cortically Evoked Motor-Neuron Potential in Streptozotocin-Induced Diabetic Rats: A Study about the Effect of Diabetes upon Cortical-Initiated Movement." BioMed Research International 2020 (February 26, 2020): 1–5. http://dx.doi.org/10.1155/2020/1942534.
Texte intégralKhatri, Vivek, Randy M. Bruno, and Daniel J. Simons. "Stimulus-Specific and Stimulus-Nonspecific Firing Synchrony and Its Modulation by Sensory Adaptation in the Whisker-to-Barrel Pathway." Journal of Neurophysiology 101, no. 5 (2009): 2328–38. http://dx.doi.org/10.1152/jn.91151.2008.
Texte intégralNick, Christoph, Sandeep Yadav, Ravi Joshi, Christiane Thielemann, and Jörg J. Schneider. "Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks." Beilstein Journal of Nanotechnology 5 (September 17, 2014): 1575–79. http://dx.doi.org/10.3762/bjnano.5.169.
Texte intégralHAYOT, FERNAND, and DANIEL TRANCHINA. "Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity." Visual Neuroscience 18, no. 6 (2001): 865–77. http://dx.doi.org/10.1017/s0952523801186037.
Texte intégralSadeh, Sadra, and Claudia Clopath. "Theory of neuronal perturbome in cortical networks." Proceedings of the National Academy of Sciences 117, no. 43 (2020): 26966–76. http://dx.doi.org/10.1073/pnas.2004568117.
Texte intégralJia, Xiaoxuan, Joshua H. Siegle, Corbett Bennett, et al. "High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification." Journal of Neurophysiology 121, no. 5 (2019): 1831–47. http://dx.doi.org/10.1152/jn.00680.2018.
Texte intégralRatié, Leslie, Elodie Desmaris, Fernando García-Moreno, et al. "Loss of Dmrt5 Affects the Formation of the Subplate and Early Corticogenesis." Cerebral Cortex 30, no. 5 (2019): 3296–312. http://dx.doi.org/10.1093/cercor/bhz310.
Texte intégralMikhailova, Alexandra, Naveena Sunkara, and Patrick S. McQuillen. "Unbiased Quantification of Subplate Neuron Loss following Neonatal Hypoxia-Ischemia in a Rat Model." Developmental Neuroscience 39, no. 1-4 (2017): 171–81. http://dx.doi.org/10.1159/000460815.
Texte intégralLiu, X.-S., X.-L. Bai, Z.-X. Wang, S.-Y. Xu, Y. Ma, and Z.-N. Wang. "Nrf2 mediates the neuroprotective effect of isoflurane preconditioning in cortical neuron injury induced by oxygen-glucose deprivation." Human & Experimental Toxicology 40, no. 7 (2021): 1163–72. http://dx.doi.org/10.1177/0960327121989416.
Texte intégralReid, C. B., S. F. Tavazoie, and C. A. Walsh. "Clonal dispersion and evidence for asymmetric cell division in ferret cortex." Development 124, no. 12 (1997): 2441–50. http://dx.doi.org/10.1242/dev.124.12.2441.
Texte intégralDuque, A., B. Balatoni, L. Detari, and L. Zaborszky. "EEG Correlation of the Discharge Properties of Identified Neurons in the Basal Forebrain." Journal of Neurophysiology 84, no. 3 (2000): 1627–35. http://dx.doi.org/10.1152/jn.2000.84.3.1627.
Texte intégralWertz, Adrian, Stuart Trenholm, Keisuke Yonehara, et al. "Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules." Science 349, no. 6243 (2015): 70–74. http://dx.doi.org/10.1126/science.aab1687.
Texte intégralContreras, Diego, Niklaus Dürmüller, and Mircea Steriade. "Absence of a Prevalent Laminar Distribution of IPSPs in Association Cortical Neurons of Cat." Journal of Neurophysiology 78, no. 5 (1997): 2742–53. http://dx.doi.org/10.1152/jn.1997.78.5.2742.
Texte intégralBruno, Golosio, Tiddia Gianmarco, De Luca Chiara, Pastorelli Elena, Simula Francesco, and Stanislao PAOLUCCI Pier. "Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs." Frontiers in Computational Neuroscience 15 (February 17, 2021): 13. https://doi.org/10.5281/zenodo.4661404.
Texte intégralRaffi, Milena, Alessandro Piras, Roberta Calzavara, and Salvatore Squatrito. "Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow." BioMed Research International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/6495872.
Texte intégralLlamosas, Nerea, Sheldon D. Michaelson, Thomas Vaissiere, Camilo Rojas, Courtney A. Miller, and Gavin Rumbaugh. "Syngap1 regulates experience-dependent cortical ensemble plasticity by promoting in vivo excitatory synapse strengthening." Proceedings of the National Academy of Sciences 118, no. 34 (2021): e2100579118. http://dx.doi.org/10.1073/pnas.2100579118.
Texte intégralClark, Courtney M., Rosemary M. Clark, Joshua A. Hoyle, Jyoti A. Chuckowree, Catriona A. McLean, and Tracey C. Dickson. "Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS." Brain Sciences 11, no. 8 (2021): 969. http://dx.doi.org/10.3390/brainsci11080969.
Texte intégralMcKenna, William L., Christian F. Ortiz-Londono, Thomas K. Mathew, Kendy Hoang, Sol Katzman, and Bin Chen. "Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex." Proceedings of the National Academy of Sciences 112, no. 37 (2015): 11702–7. http://dx.doi.org/10.1073/pnas.1504144112.
Texte intégralBuren, Caodu, Gaqi Tu, Matthew P. Parsons, Marja D. Sepers, and Lynn A. Raymond. "Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture." Journal of Neurophysiology 116, no. 2 (2016): 380–90. http://dx.doi.org/10.1152/jn.00933.2015.
Texte intégralYuan, Wen, Sai Ma, Juliana R. Brown, et al. "Temporally divergent regulatory mechanisms govern neuronal diversification and maturation in the mouse and marmoset neocortex." Nature Neuroscience 25, no. 8 (2022): 1049–58. http://dx.doi.org/10.1038/s41593-022-01123-4.
Texte intégralCissé, Youssouf, François Grenier, Igor Timofeev, and Mircea Steriade. "Electrophysiological Properties and Input-Output Organization of Callosal Neurons in Cat Association Cortex." Journal of Neurophysiology 89, no. 3 (2003): 1402–13. http://dx.doi.org/10.1152/jn.0871.2002.
Texte intégralZhang, Mengliang, and Kevin D. Alloway. "Stimulus-Induced Intercolumnar Synchronization of Neuronal Activity in Rat Barrel Cortex: A Laminar Analysis." Journal of Neurophysiology 92, no. 3 (2004): 1464–78. http://dx.doi.org/10.1152/jn.01272.2003.
Texte intégralTrondoli, Giovanni, та Dario Saffioti. "Lo studio PET/TC delle placche β-amiloidi con 18F – FlorBetapir, 18F – FlorBetaben e 18F – Flutemetamol". Journal of Advanced Health Care 1, № 4 (2019). http://dx.doi.org/10.36017/jahc20191437.
Texte intégralTrondoli, Giovanni, and Dario Saffioti. "Lo studio PET/TC delle placche ?-amiloidi con 18F – FlorBetapir, 18F – FlorBetaben e 18F – Flutemetamol." Journal of Advanced Health Care, July 17, 2019. http://dx.doi.org/10.36017/jahc1907-003/.
Texte intégralPark, Junchol, James W. Phillips, Jian-Zhong Guo, Kathleen A. Martin, Adam W. Hantman, and Joshua T. Dudman. "Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes." Science Advances 8, no. 10 (2022). http://dx.doi.org/10.1126/sciadv.abj5167.
Texte intégralKon, Kazuhiro, Koji L. Ode, Tomoyuki Mano, et al. "Cortical parvalbumin neurons are responsible for homeostatic sleep rebound through CaMKII activation." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-50168-5.
Texte intégralWill, Lena, Sybren Portegies, Jasper van Schelt, Merel van Luyk, Dick Jaarsma, and Casper C. Hoogenraad. "Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo." Acta Neuropathologica Communications 7, no. 1 (2019). http://dx.doi.org/10.1186/s40478-019-0827-y.
Texte intégralHatanaka, Yumiko, Kentaro Yamada, Tomoki Eritate, Yasuo Kawaguchi, and Tatsumi Hirata. "Neuronal fate resulting from indirect neurogenesis in the mouse neocortex." Cerebral Cortex 34, no. 11 (2024). http://dx.doi.org/10.1093/cercor/bhae439.
Texte intégral