Littérature scientifique sur le sujet « Noncommutative algebras »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Noncommutative algebras ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Noncommutative algebras"

1

Arutyunov, A. A. "Derivation Algebra in Noncommutative Group Algebras." Proceedings of the Steklov Institute of Mathematics 308, no. 1 (January 2020): 22–34. http://dx.doi.org/10.1134/s0081543820010022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Chaoyuan. "Acyclic Complexes and Graded Algebras." Mathematics 11, no. 14 (July 19, 2023): 3167. http://dx.doi.org/10.3390/math11143167.

Texte intégral
Résumé :
We already know that the noncommutative N-graded Noetherian algebras resemble commutative local Noetherian rings in many respects. We also know that commutative rings have the important property that every minimal acyclic complex of finitely generated graded free modules is totally acyclic, and we want to generalize such properties to noncommutative N-graded Noetherian algebra. By generalizing the conclusions about commutative rings and combining what we already know about noncommutative graded algebras, we identify a class of noncommutative graded algebras with the property that every minimal
Styles APA, Harvard, Vancouver, ISO, etc.
3

Abel, Mati, and Krzysztof Jarosz. "Noncommutative uniform algebras." Studia Mathematica 162, no. 3 (2004): 213–18. http://dx.doi.org/10.4064/sm162-3-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xu, Ping. "Noncommutative Poisson Algebras." American Journal of Mathematics 116, no. 1 (February 1994): 101. http://dx.doi.org/10.2307/2374983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Roh, Jaiok, and Ick-Soon Chang. "Approximate Derivations with the Radical Ranges of Noncommutative Banach Algebras." Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/594075.

Texte intégral
Résumé :
We consider the derivations on noncommutative Banach algebras, and we will first study the conditions for a derivation on noncommutative Banach algebra. Then, we examine the stability of functional inequalities with a derivation. Finally, we take the derivations with the radical ranges on noncommutative Banach algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ercolessi, Elisa, Giovanni Landi, and Paulo Teotonio-Sobrinho. "Noncommutative Lattices and the Algebras of Their Continuous Functions." Reviews in Mathematical Physics 10, no. 04 (May 1998): 439–66. http://dx.doi.org/10.1142/s0129055x98000148.

Texte intégral
Résumé :
Recently a new kind of approximation to continuum topological spaces has been introduced, the approximating spaces being partially ordered sets (posets) with a finite or at most a countable number of points. The partial order endows a poset with a nontrivial non-Hausdorff topology. Their ability to reproduce important topological information of the continuum has been the main motivation for their use in quantum physics. Posets are truly noncommutative spaces, or noncommutative lattices, since they can be realized as structure spaces of noncommutative C*-algebras. These noncommutative algebras
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ferreira, Vitor O., Jairo Z. Gonçalves, and Javier Sánchez. "Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras." International Journal of Algebra and Computation 25, no. 06 (September 2015): 1075–106. http://dx.doi.org/10.1142/s0218196715500319.

Texte intégral
Résumé :
For any Lie algebra L over a field, its universal enveloping algebra U(L) can be embedded in a division ring 𝔇(L) constructed by Lichtman. If U(L) is an Ore domain, 𝔇(L) coincides with its ring of fractions. It is well known that the principal involution of L, x ↦ -x, can be extended to an involution of U(L), and Cimpric proved that this involution can be extended to one on 𝔇(L). For a large class of noncommutative Lie algebras L over a field of characteristic zero, we show that 𝔇(L) contains noncommutative free algebras generated by symmetric elements with respect to (the extension of) the pr
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liang, Shi-Dong, and Matthew J. Lake. "An Introduction to Noncommutative Physics." Physics 5, no. 2 (April 18, 2023): 436–60. http://dx.doi.org/10.3390/physics5020031.

Texte intégral
Résumé :
Noncommutativity in physics has a long history, tracing back to classical mechanics. In recent years, many new developments in theoretical physics, and in practical applications rely on different techniques of noncommutative algebras. In this review, we introduce the basic concepts and techniques of noncommutative physics in a range of areas, including classical physics, condensed matter systems, statistical mechanics, and quantum mechanics, and we present some important examples of noncommutative algebras, including the classical Poisson brackets, the Heisenberg algebra, Lie and Clifford alge
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mahanta, Snigdhayan. "Noncommutative stable homotopy and stable infinity categories." Journal of Topology and Analysis 07, no. 01 (December 2, 2014): 135–65. http://dx.doi.org/10.1142/s1793525315500077.

Texte intégral
Résumé :
The noncommutative stable homotopy category NSH is a triangulated category that is the universal receptacle for triangulated homology theories on separable C*-algebras. We show that the triangulated category NSH is topological as defined by Schwede using the formalism of (stable) infinity categories. More precisely, we construct a stable presentable infinity category of noncommutative spectra and show that NSHop sits inside its homotopy category as a full triangulated subcategory, from which the above result can be deduced. We also introduce a presentable infinity category of noncommutative po
Styles APA, Harvard, Vancouver, ISO, etc.
10

LETZTER, EDWARD S. "NONCOMMUTATIVE IMAGES OF COMMUTATIVE SPECTRA." Journal of Algebra and Its Applications 07, no. 05 (October 2008): 535–52. http://dx.doi.org/10.1142/s0219498808002941.

Texte intégral
Résumé :
We initiate a unified, axiomatic study of noncommutative algebras R whose prime spectra are, in a natural way, finite unions of commutative noetherian spectra. Our results illustrate how these commutative spectra can be functorially "sewn together" to form Spec R. In particular, we construct a bimodule-determined functor Mod Z → Mod R, for a suitable commutative noetherian ring Z, from which there follows a finite-to-one, continuous surjection Spec Z → Spec R. Algebras satisfying the given axiomatic framework include PI algebras finitely generated over fields, noetherian PI algebras, envelopin
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Noncommutative algebras"

1

Rennie, Adam Charles. "Noncommutative spin geometry." Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hartman, Gregory Neil. "Graphs and Noncommutative Koszul Algebras." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.

Texte intégral
Résumé :
A new connection between combinatorics and noncommutative algebra is established by relating a certain class of directed graphs to noncommutative Koszul algebras. The directed graphs in this class are called full graphs and are defined by a set of criteria on the edges. The structural properties of full graphs are studied as they relate to the edge criteria. A method is introduced for generating a Koszul algebra Lambda from a full graph G. The properties of Lambda are examined as they relate to the structure of G, with special attention being given to the construction of a projective resoluti
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schoenecker, Kevin J. "An infinite family of anticommutative algebras with a cubic form." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Russell, Ewan. "Prime ideals in quantum algebras." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.

Texte intégral
Résumé :
The central objects of study in this thesis are quantized coordinate algebras. These algebras originated in the 1980s in the work of Drinfeld and Jumbo and are noncommutative analogues of coordinate rings of algebraic varieties. The organic nature by which these algebras arose is of great interest to algebraists. In particular, investigating ring theoretic properties of these noncommutative algebras in comparison to the properties already known about their classical (commutative) counterparts proves to be a fruitful process. The prime spectrum of an algebra has always been seen as an important
Styles APA, Harvard, Vancouver, ISO, etc.
5

Phan, Christopher Lee 1980. "Koszul and generalized Koszul properties for noncommutative graded algebras." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.

Texte intégral
Résumé :
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.<br>We investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that
Styles APA, Harvard, Vancouver, ISO, etc.
6

Meyer, Jonas R. "Noncommutative Hardy algebras, multipliers, and quotients." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.

Texte intégral
Résumé :
The principal objects of study in this thesis are the noncommutative Hardy algebras introduced by Muhly and Solel in 2004, also called simply ``Hardy algebras,'' and their quotients by ultraweakly closed ideals. The Hardy algebras form a class of nonselfadjoint dual operator algebras that generalize the classical Hardy algebra, the noncommutative analytic Toeplitz algebras introduced by Popescu in 1991, and other classes of operator algebras studied in the literature. It is known that a quotient of a noncommutative analytic Toeplitz algebra by a weakly closed ideal can be represented completel
Styles APA, Harvard, Vancouver, ISO, etc.
7

Uhl, Christine. "Quantum Drinfeld Hecke Algebras." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.

Texte intégral
Résumé :
Quantum Drinfeld Hecke algebras extend both Lusztig's graded Hecke algebras and the symplectic reflection algebras of Etingof and Ginzburg to the quantum setting. A quantum (or skew) polynomial ring is generated by variables which commute only up to a set of quantum parameters. Certain finite groups may act by graded automorphisms on a quantum polynomial ring and quantum Drinfeld Hecke algebras deform the natural semi-direct product. We classify these algebras for the infinite family of complex reflection groups acting in arbitrary dimension. We also classify quantum Drinfeld Hecke algebras i
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras." London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.

Texte intégral
Résumé :
Groebner-Shirshov bases, introduced independently by Shirshov in 1962 and Buchberger in 1965, are powerful computational tools in mathematics, science, engineering, and computer science. This thesis focuses on the theories, algorithms, and applications of Groebner-Shirshov bases for two classes of noncommutative algebras: differential difference algebras and skew solvable polynomial rings. This thesis consists of three manuscripts (Chapters 2--4), an introductory chapter (Chapter 1) and a concluding chapter (Chapter 5). In Chapter 1, we introduce the background and the goals of the thesi
Styles APA, Harvard, Vancouver, ISO, etc.
9

Oblomkov, Alexei. "Double affine Hecke algebras and noncommutative geometry." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.<br>Includes bibliographical references (p. 93-96).<br>In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gohm, Rolf. "Noncommutative stationary processes /." Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Noncommutative algebras"

1

Farb, Benson. Noncommutative algebra. New York: Springer-Verlag, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Marubayashi, Hidetoshi. Prime Divisors and Noncommutative Valuation Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Khalkhali, Masoud, and Guoliang Yu. Perspectives on noncommutative geometry. Providence, R.I: American Mathematical Society, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Silva, Ana Cannas da. Geometric models for noncommutative algebras. Providence, R.I: American Mathematical Society, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rosenberg, Alex. Noncommutative algebraic geometry and representations of quantized algebras. Dordrecht: Kluwer Academic Publishers, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cuculescu, I. Noncommutative probability. Dordrecht: Kluwer Academic Publishers, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rosenberg, Alexander L. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Diep, Do Ngoc. Methods of noncommutative geometry for group C*-algebras. Boca Raton: Chapman & Hall/CRC, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bonfiglioli, Andrea. Topics in noncommutative algebra: The theorem of Campbell, Baker, Hausdorff and Dynkin. Heidelberg: Springer, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Doran, Robert S., and Richard V. Kadison, eds. Operator Algebras, Quantization, and Noncommutative Geometry. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Noncommutative algebras"

1

Cuculescu, I., and A. G. Oprea. "Jordan Algebras." In Noncommutative Probability, 293–315. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Arzumanian, Victor, and Suren Grigorian. "Noncommutative Uniform Algebras." In Linear Operators in Function Spaces, 101–9. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cuculescu, I., and A. G. Oprea. "Probability on von Neumann Algebras." In Noncommutative Probability, 53–94. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rosenberg, Alexander L. "Noncommutative Affine Schemes." In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 1–47. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rosenberg, Alexander L. "Noncommutative Local Algebra." In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 110–41. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rosenberg, Alexander L. "Noncommutative Projective Spectrum." In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 276–305. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Aschieri, Paolo. "Quantum Groups, Quantum Lie Algebras, and Twists." In Noncommutative Spacetimes, 111–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89793-4_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bratteli, Ola. "Noncommutative vectorfields." In Derivations, Dissipations and Group Actions on C*-algebras, 34–240. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gracia-Bondía, José M., Joseph C. Várilly, and Héctor Figueroa. "Kreimer-Connes-Moscovici Algebras." In Elements of Noncommutative Geometry, 597–640. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Várilly, Joseph C. "The Interface of Noncommutative Geometry and Physics." In Clifford Algebras, 227–42. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Noncommutative algebras"

1

VÁRILLY, JOSEPH C. "HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schauenburg, P. "Weak Hopf algebras and quantum groupoids." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Khalkhali, M., and B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gomez, X., and S. Majid. "Relating quantum and braided Lie algebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Szymański, Wojciech. "Quantum lens spaces and principal actions on graph C*-algebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

MORI, IZURU. "NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES." In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Majewski, Władysław A., and Marcin Marciniak. "On the structure of positive maps between matrix algebras." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wakui, Michihisa. "The coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

LONGO, ROBERTO. "OPERATOR ALGEBRAS AND NONCOMMUTATIVE GEOMETRIC ASPECTS IN CONFORMAL FIELD THEORY." In XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fernández, David, and Luis Álvarez–cónsul. "Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1." In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!