Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Noncommutative algebras.

Articles de revues sur le sujet « Noncommutative algebras »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Noncommutative algebras ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Arutyunov, A. A. "Derivation Algebra in Noncommutative Group Algebras." Proceedings of the Steklov Institute of Mathematics 308, no. 1 (January 2020): 22–34. http://dx.doi.org/10.1134/s0081543820010022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Chaoyuan. "Acyclic Complexes and Graded Algebras." Mathematics 11, no. 14 (July 19, 2023): 3167. http://dx.doi.org/10.3390/math11143167.

Texte intégral
Résumé :
We already know that the noncommutative N-graded Noetherian algebras resemble commutative local Noetherian rings in many respects. We also know that commutative rings have the important property that every minimal acyclic complex of finitely generated graded free modules is totally acyclic, and we want to generalize such properties to noncommutative N-graded Noetherian algebra. By generalizing the conclusions about commutative rings and combining what we already know about noncommutative graded algebras, we identify a class of noncommutative graded algebras with the property that every minimal
Styles APA, Harvard, Vancouver, ISO, etc.
3

Abel, Mati, and Krzysztof Jarosz. "Noncommutative uniform algebras." Studia Mathematica 162, no. 3 (2004): 213–18. http://dx.doi.org/10.4064/sm162-3-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xu, Ping. "Noncommutative Poisson Algebras." American Journal of Mathematics 116, no. 1 (February 1994): 101. http://dx.doi.org/10.2307/2374983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Roh, Jaiok, and Ick-Soon Chang. "Approximate Derivations with the Radical Ranges of Noncommutative Banach Algebras." Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/594075.

Texte intégral
Résumé :
We consider the derivations on noncommutative Banach algebras, and we will first study the conditions for a derivation on noncommutative Banach algebra. Then, we examine the stability of functional inequalities with a derivation. Finally, we take the derivations with the radical ranges on noncommutative Banach algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ercolessi, Elisa, Giovanni Landi, and Paulo Teotonio-Sobrinho. "Noncommutative Lattices and the Algebras of Their Continuous Functions." Reviews in Mathematical Physics 10, no. 04 (May 1998): 439–66. http://dx.doi.org/10.1142/s0129055x98000148.

Texte intégral
Résumé :
Recently a new kind of approximation to continuum topological spaces has been introduced, the approximating spaces being partially ordered sets (posets) with a finite or at most a countable number of points. The partial order endows a poset with a nontrivial non-Hausdorff topology. Their ability to reproduce important topological information of the continuum has been the main motivation for their use in quantum physics. Posets are truly noncommutative spaces, or noncommutative lattices, since they can be realized as structure spaces of noncommutative C*-algebras. These noncommutative algebras
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ferreira, Vitor O., Jairo Z. Gonçalves, and Javier Sánchez. "Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras." International Journal of Algebra and Computation 25, no. 06 (September 2015): 1075–106. http://dx.doi.org/10.1142/s0218196715500319.

Texte intégral
Résumé :
For any Lie algebra L over a field, its universal enveloping algebra U(L) can be embedded in a division ring 𝔇(L) constructed by Lichtman. If U(L) is an Ore domain, 𝔇(L) coincides with its ring of fractions. It is well known that the principal involution of L, x ↦ -x, can be extended to an involution of U(L), and Cimpric proved that this involution can be extended to one on 𝔇(L). For a large class of noncommutative Lie algebras L over a field of characteristic zero, we show that 𝔇(L) contains noncommutative free algebras generated by symmetric elements with respect to (the extension of) the pr
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liang, Shi-Dong, and Matthew J. Lake. "An Introduction to Noncommutative Physics." Physics 5, no. 2 (April 18, 2023): 436–60. http://dx.doi.org/10.3390/physics5020031.

Texte intégral
Résumé :
Noncommutativity in physics has a long history, tracing back to classical mechanics. In recent years, many new developments in theoretical physics, and in practical applications rely on different techniques of noncommutative algebras. In this review, we introduce the basic concepts and techniques of noncommutative physics in a range of areas, including classical physics, condensed matter systems, statistical mechanics, and quantum mechanics, and we present some important examples of noncommutative algebras, including the classical Poisson brackets, the Heisenberg algebra, Lie and Clifford alge
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mahanta, Snigdhayan. "Noncommutative stable homotopy and stable infinity categories." Journal of Topology and Analysis 07, no. 01 (December 2, 2014): 135–65. http://dx.doi.org/10.1142/s1793525315500077.

Texte intégral
Résumé :
The noncommutative stable homotopy category NSH is a triangulated category that is the universal receptacle for triangulated homology theories on separable C*-algebras. We show that the triangulated category NSH is topological as defined by Schwede using the formalism of (stable) infinity categories. More precisely, we construct a stable presentable infinity category of noncommutative spectra and show that NSHop sits inside its homotopy category as a full triangulated subcategory, from which the above result can be deduced. We also introduce a presentable infinity category of noncommutative po
Styles APA, Harvard, Vancouver, ISO, etc.
10

LETZTER, EDWARD S. "NONCOMMUTATIVE IMAGES OF COMMUTATIVE SPECTRA." Journal of Algebra and Its Applications 07, no. 05 (October 2008): 535–52. http://dx.doi.org/10.1142/s0219498808002941.

Texte intégral
Résumé :
We initiate a unified, axiomatic study of noncommutative algebras R whose prime spectra are, in a natural way, finite unions of commutative noetherian spectra. Our results illustrate how these commutative spectra can be functorially "sewn together" to form Spec R. In particular, we construct a bimodule-determined functor Mod Z → Mod R, for a suitable commutative noetherian ring Z, from which there follows a finite-to-one, continuous surjection Spec Z → Spec R. Algebras satisfying the given axiomatic framework include PI algebras finitely generated over fields, noetherian PI algebras, envelopin
Styles APA, Harvard, Vancouver, ISO, etc.
11

Utudee, Somlak. "Tensor Products of Noncommutative Lp-Spaces." ISRN Algebra 2012 (May 14, 2012): 1–9. http://dx.doi.org/10.5402/2012/197468.

Texte intégral
Résumé :
We consider the notion of tensor product of noncommutative Lp spaces associated with finite von Neumann algebras and define the notion of tensor product of Haagerup noncommutative Lp spaces associated with σ-finite von Neumann algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
12

BLOHMANN, CHRISTIAN. "PERTURBATIVE SYMMETRIES ON NONCOMMUTATIVE SPACES." International Journal of Modern Physics A 19, no. 32 (December 30, 2004): 5693–706. http://dx.doi.org/10.1142/s0217751x04021238.

Texte intégral
Résumé :
Perturbative deformations of symmetry structures on noncommutative spaces are studied in view of noncommutative quantum field theories. The rigidity of enveloping algebras of semisimple Lie algebras with respect to formal deformations is reviewed in the context of star products. It is shown that rigidity of symmetry algebras extends to rigidity of the action of the symmetry on the space. This implies that the noncommutative spaces considered can be realized as star products by particular ordering prescriptions which are compatible with the symmetry. These symmetry preserving ordering prescript
Styles APA, Harvard, Vancouver, ISO, etc.
13

Liu, Yong Lin, and Xiaobo Cai. "Pseudo-Weak-R0Algebras." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/352381.

Texte intégral
Résumé :
A positive answer to the open problem of Iorgulescu on extending weak-R0algebras andR0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0algebras andR0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0algebras and pseudo-R0algebras are obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
14

PIONTKOVSKI, DMITRI. "ALGEBRAS ASSOCIATED TO PSEUDO-ROOTS OF NONCOMMUTATIVE POLYNOMIALS ARE KOSZUL." International Journal of Algebra and Computation 15, no. 04 (August 2005): 643–48. http://dx.doi.org/10.1142/s0218196705002396.

Texte intégral
Résumé :
Quadratic algebras associated to pseudo-roots of noncommutative polynomials have been introduced by I. Gelfand, Retakh, and Wilson in connection with studying the decompositions of noncommutative polynomials. Later they (with S. Gelfand and Serconek) showed that the Hilbert series of these algebras and their quadratic duals satisfy the necessary condition for Koszulity. It is proved in this note that these algebras are Koszul.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Abel, Mati. "Dense subalgebras in noncommutative Jordan topological algebras." Acta et Commentationes Universitatis Tartuensis de Mathematica 1 (December 31, 1996): 65–70. http://dx.doi.org/10.12697/acutm.1996.01.07.

Texte intégral
Résumé :
Wilansky conjectured in [12] that normed dense Q-algebras are full subalgebras of Banach algebras. Beddaa and Oudadess proved in [2] that Wilansky’s conjecture was true. They showed that k-normed Q-algebras are full subalgebras of k-Banach algebras for each k∈(0,1]. Moreover, J. Pérez, L. Rico and A. Rodríguez showed in [8], Theorem 4, that this was also true in the case of noncommutative Jordan-Banach algebras. In the present paper this problem has been studied in a more general case. It is proved that all dense Q-subalgebras of topological algebras and of noncommutative Jordan topological al
Styles APA, Harvard, Vancouver, ISO, etc.
16

Abdullaev, R., S. Egamov, and B. Iskandarov. "Isomorphisms of Noncommutative Log-algebras." Bulletin of Science and Practice, no. 12 (December 15, 2022): 43–46. http://dx.doi.org/10.33619/2414-2948/85/05.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Eriksen, Eivind, and Arvid Siqveland. "Geometry of noncommutative algebras." Banach Center Publications 93 (2011): 69–82. http://dx.doi.org/10.4064/bc93-0-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

LOPEZ, ANTONIO FERNANDEZ. "NONCOMMUTATIVE JORDAN RIESZ ALGEBRAS." Quarterly Journal of Mathematics 39, no. 1 (1988): 67–80. http://dx.doi.org/10.1093/qmath/39.1.67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Brown, Robert B., and Nora C. Hopkins. "Noncommutative matrix Jordan algebras." Transactions of the American Mathematical Society 333, no. 1 (January 1, 1992): 137–55. http://dx.doi.org/10.1090/s0002-9947-1992-1068925-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Casas, J. M., and T. Datuashvili. "Noncommutative Leibniz–Poisson Algebras." Communications in Algebra 34, no. 7 (August 2006): 2507–30. http://dx.doi.org/10.1080/00927870600651091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Davidson, Kenneth R., and Gelu Popescu. "Noncommutative Disc Algebras for Semigroups." Canadian Journal of Mathematics 50, no. 2 (April 1, 1998): 290–311. http://dx.doi.org/10.4153/cjm-1998-015-5.

Texte intégral
Résumé :
RésuméWe study noncommutative disc algebras associated to the free product of discrete subsemigroups of ℝ+. These algebras are associated to generalized Cuntz algebras, which are shown to be simple and purely infinite. The nonself-adjoint subalgebras determine the semigroup up to isomorphism. Moreover, we establish a dilation theorem for contractive representations of these semigroups which yields a variant of the von Neumann inequality. These methods are applied to establish a solution to the truncated moment problem in this context.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lezama, Oswaldo, and Helbert Venegas. "Center of skew PBW extensions." International Journal of Algebra and Computation 30, no. 08 (September 19, 2020): 1625–50. http://dx.doi.org/10.1142/s0218196720500575.

Texte intégral
Résumé :
In this paper we compute the center of many noncommutative algebras that can be interpreted as skew [Formula: see text] extensions. We show that, under some natural assumptions on the parameters that define the extension, either the center is trivial, or, it is of polynomial type. As an application, we provided new examples of noncommutative algebras that are cancellative.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Hopkins, Nora C. "Noncommutative matrix jordon algebras from lie algebras." Communications in Algebra 19, no. 3 (January 1991): 767–75. http://dx.doi.org/10.1080/00927879108824168.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ebrahimi-Fard, Kurusch, Alexander Lundervold, and Dominique Manchon. "Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras." International Journal of Algebra and Computation 24, no. 05 (August 2014): 671–705. http://dx.doi.org/10.1142/s0218196714500283.

Texte intégral
Résumé :
Bell polynomials appear in several combinatorial constructions throughout mathematics. Perhaps most naturally in the combinatorics of set partitions, but also when studying compositions of diffeomorphisms on vector spaces and manifolds, and in the study of cumulants and moments in probability theory. We construct commutative and noncommutative Bell polynomials and explain how they give rise to Faà di Bruno Hopf algebras. We use the language of incidence Hopf algebras, and along the way provide a new description of antipodes in noncommutative incidence Hopf algebras, involving quasideterminants
Styles APA, Harvard, Vancouver, ISO, etc.
25

Vasquez Campos, Brian D., and Jorge P. Zubelli. "Noncommutative Bispectral Algebras and Their Presentations." Symmetry 14, no. 10 (October 19, 2022): 2202. http://dx.doi.org/10.3390/sym14102202.

Texte intégral
Résumé :
We prove a general result on presentations of finitely generated algebras and apply it to obtain nice presentations for some noncommutative algebras arising in the matrix bispectral problem. By “nice presentation”, we mean a presentation that has as few as possible defining relations. This, in turn, has potential applications in computer algebra implementations and examples. Our results can be divided into three parts. In the first two, we consider bispectral algebras with the eigenvalue in the physical equation to be scalar-valued for 2×2 and 3×3 matrix-valued eigenfunctions. In the third par
Styles APA, Harvard, Vancouver, ISO, etc.
26

KUDRYAVTSEVA, GANNA. "A DUALIZING OBJECT APPROACH TO NONCOMMUTATIVE STONE DUALITY." Journal of the Australian Mathematical Society 95, no. 3 (August 19, 2013): 383–403. http://dx.doi.org/10.1017/s1446788713000323.

Texte intégral
Résumé :
AbstractThe aim of the present paper is to extend the dualizing object approach to Stone duality to the noncommutative setting of skew Boolean algebras. This continues the study of noncommutative generalizations of different forms of Stone duality initiated in recent papers by Bauer and Cvetko-Vah, Lawson, Lawson and Lenz, Resende, and also the current author. In this paper we construct a series of dual adjunctions between the categories of left-handed skew Boolean algebras and Boolean spaces, the unital versions of which are induced by dualizing objects $\{ 0, 1, \ldots , n+ 1\} $, $n\geq 0$.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Škoda, Zoran. "Some Equivariant Constructions in Noncommutative Algebraic Geometry." gmj 16, no. 1 (March 2009): 183–202. http://dx.doi.org/10.1515/gmj.2009.183.

Texte intégral
Résumé :
Abstract We here present rudiments of an approach to geometric actions in noncommutative algebraic geometry, based on geometrically admissible actions of monoidal categories. This generalizes the usual (co)module algebras over Hopf algebras which provide affine examples. We introduce a compatibility of monoidal actions and localizations which is a distributive law. There are satisfactory notions of equivariant objects, noncommutative fiber bundles and quotients in this setup.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Chakraborty, Sayan. "Some remarks on $\mathrm{K}_0$ of noncommutative tori." MATHEMATICA SCANDINAVICA 126, no. 2 (May 6, 2020): 387–400. http://dx.doi.org/10.7146/math.scand.a-119699.

Texte intégral
Résumé :
Using Rieffel's construction of projective modules over higher dimensional noncommutative tori, we construct projective modules over some continuous field of C*-algebras whose fibres are noncommutative tori. Using a result of Echterhoff et al., our construction gives generators of $\mathrm {K}_0$ for all noncommutative tori.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tabuada, Gonçalo, and Michel Van den Bergh. "Noncommutative motives of Azumaya algebras." Journal of the Institute of Mathematics of Jussieu 14, no. 2 (March 10, 2014): 379–403. http://dx.doi.org/10.1017/s147474801400005x.

Texte intégral
Résumé :
AbstractLet $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar isomorphism holds for every $R$-linear additive invariant. This leads to several computations. Along the way we show that, in the case of finite-dimensional algebras of finite global dimension, all additive invariants are nilinvaria
Styles APA, Harvard, Vancouver, ISO, etc.
30

KAJIURA, HIROSHIGE. "NONCOMMUTATIVE HOMOTOPY ALGEBRAS ASSOCIATED WITH OPEN STRINGS." Reviews in Mathematical Physics 19, no. 01 (February 2007): 1–99. http://dx.doi.org/10.1142/s0129055x07002912.

Texte intégral
Résumé :
We discuss general properties of A∞-algebras and their applications to the theory of open strings. The properties of cyclicity for A∞-algebras are examined in detail. We prove the decomposition theorem, which is a stronger version of the minimal model theorem, for A∞-algebras and cyclic A∞-algebras and discuss various consequences of it. In particular, it is applied to classical open string field theories and it is shown that all classical open string field theories on a fixed conformal background are cyclic A∞-isomorphic to each other. The same results hold for classical closed string field t
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ge, Liming, and Wei Yuan. "Kadison–Singer algebras: Hyperfinite case." Proceedings of the National Academy of Sciences 107, no. 5 (January 14, 2010): 1838–43. http://dx.doi.org/10.1073/pnas.0907161107.

Texte intégral
Résumé :
A new class of operator algebras, Kadison–Singer algebras (KS-algebras), is introduced. These highly noncommutative, non-self-adjoint algebras generalize triangular matrix algebras. They are determined by certain minimally generating lattices of projections in the von Neumann algebras corresponding to the commutant of the diagonals of the KS-algebras. A new invariant for the lattices is introduced to classify these algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
32

LISZKA-DALECKI, JAN, and PIOTR M. SOŁTAN. "QUANTUM ISOMETRY GROUPS OF SYMMETRIC GROUPS." International Journal of Mathematics 23, no. 07 (June 27, 2012): 1250074. http://dx.doi.org/10.1142/s0129167x12500747.

Texte intégral
Résumé :
We identify the quantum isometry groups of spectral triples built on the symmetric groups with length functions arising from the nearest-neighbor transpositions as generators. It turns out that they are isomorphic to certain "doubling" of the group algebras of the respective symmetric groups. We discuss the doubling procedure in the context of regular multiplier Hopf algebras. In the last section we study the dependence of the isometry group of Sn on the choice of generators in the case n = 3. We show that two different choices of generators lead to nonisomorphic quantum isometry groups which
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ivanescu, Cristian, and Dan Kučerovský. "Noncommutative aspects of Villadsen algebras." Journal of Physics: Conference Series 2667, no. 1 (December 1, 2023): 012011. http://dx.doi.org/10.1088/1742-6596/2667/1/012011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

BEIL, CHARLIE. "NONNOETHERIAN HOMOTOPY DIMER ALGEBRAS AND NONCOMMUTATIVE CREPANT RESOLUTIONS." Glasgow Mathematical Journal 60, no. 2 (October 30, 2017): 447–79. http://dx.doi.org/10.1017/s0017089517000209.

Texte intégral
Résumé :
AbstractNoetherian dimer algebras form a prominent class of examples of noncommutative crepant resolutions (NCCRs). However, dimer algebras that are noetherian are quite rare, and we consider the question: how close are nonnoetherian homotopy dimer algebras to being NCCRs? To address this question, we introduce a generalization of NCCRs to nonnoetherian tiled matrix rings. We show that if a noetherian dimer algebra is obtained from a nonnoetherian homotopy dimer algebraAby contracting each arrow whose head has indegree 1, thenAis a noncommutative desingularization of its nonnoetherian centre.
Styles APA, Harvard, Vancouver, ISO, etc.
35

OMORI, Hideki, Yoshiaki MAEDA, Naoya MIYAZAKI, and Akira YOSHIOKA. "Noncommutative 3-sphere: A model of noncommutative contact algebras." Journal of the Mathematical Society of Japan 50, no. 4 (October 1998): 915–43. http://dx.doi.org/10.2969/jmsj/05040915.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Álvarez-Cónsul, Luis, David Fernández, and Reimundo Heluani. "Noncommutative Poisson vertex algebras and Courant–Dorfman algebras." Advances in Mathematics 433 (November 2023): 109269. http://dx.doi.org/10.1016/j.aim.2023.109269.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Baratella, Stefano. "Nonstandard Hulls of C*-Algebras and Their Applications." Mathematics 9, no. 20 (October 15, 2021): 2598. http://dx.doi.org/10.3390/math9202598.

Texte intégral
Résumé :
For the sake of providing insight into the use of nonstandard techniques à la A. Robinson and into Luxemburg’s nonstandard hull construction, we first present nonstandard proofs of some known results about C*-algebras. Then we introduce extensions of the nonstandard hull construction to noncommutative probability spaces and noncommutative stochastic processes. In the framework of internal noncommutative probability spaces, we investigate properties like freeness and convergence in distribution and their preservation by the nonstandard hull construction. We obtain a nonstandard characterization
Styles APA, Harvard, Vancouver, ISO, etc.
38

Herranz, Francisco J., Angel Ballesteros, Giulia Gubitosi, and Ivan Gutierrez-Sagredo. "Noncommutative spacetimes versus noncommutative spaces of geodesics." Journal of Physics: Conference Series 2667, no. 1 (December 1, 2023): 012033. http://dx.doi.org/10.1088/1742-6596/2667/1/012033.

Texte intégral
Résumé :
Abstract The aim of this contribution is twofold. First, we show that when two (or more) different quantum groups share the same noncommutative spacetime, such an ‘ambiguity’ can be resolved by considering together their corresponding noncommutative spaces of geodesics. In any case, the latter play a mathematical/physical role by themselves and, in some cases, they can be interpreted as deformed phase spaces. Second, we explicitly show that noncommutative spacetimes can be reproduced from ‘extended’ noncommutative spaces of geodesics which are those enlarged by the time translation generator.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Lee, Tsiu-Kwen. "Derivations on noncommutative Banach algebras." Studia Mathematica 167, no. 2 (2005): 153–60. http://dx.doi.org/10.4064/sm167-2-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Maszczyk, Tomasz. "Splitting Polynomials in Noncommutative Algebras." Communications in Algebra 40, no. 11 (November 2012): 4130–46. http://dx.doi.org/10.1080/00927872.2011.602780.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Mori, Izuru. "Intersection multiplicity over noncommutative algebras." Journal of Algebra 252, no. 2 (June 2002): 241–57. http://dx.doi.org/10.1016/s0021-8693(02)00016-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Dosiev, Anar. "Regularities in Noncommutative Banach Algebras." Integral Equations and Operator Theory 61, no. 3 (July 2008): 341–64. http://dx.doi.org/10.1007/s00020-008-1593-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Pilabré, Nakelgbamba Boukary, and Akry Koulibaly. "Noncommutative duplicate and Leibniz algebras." Afrika Matematika 23, no. 1 (March 20, 2011): 99–107. http://dx.doi.org/10.1007/s13370-011-0021-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ruelle, David. "Noncommutative algebras for hyperbolic diffeomorphisms." Inventiones Mathematicae 93, no. 1 (February 1988): 1–13. http://dx.doi.org/10.1007/bf01393685.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Tabuada, Gonçalo, and Michel Van den Bergh. "Noncommutative motives of separable algebras." Advances in Mathematics 303 (November 2016): 1122–61. http://dx.doi.org/10.1016/j.aim.2016.08.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Emch, G. G., H. Narnhofer, W. Thirring, and G. L. Sewell. "Anosov actions on noncommutative algebras." Journal of Mathematical Physics 35, no. 11 (November 1994): 5582–99. http://dx.doi.org/10.1063/1.530766.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tapsoba, Alexis, and Nakelgbamba Boukary Pilabré. "NONCOMMUTATIVE DUPLICATE AND VINBERG ALGEBRAS." JP Journal of Algebra, Number Theory and Applications 48, no. 1 (October 20, 2020): 19–36. http://dx.doi.org/10.17654/nt048010019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Polishchuk, Alexander. "Noncommutative Proj and coherent algebras." Mathematical Research Letters 12, no. 1 (2005): 63–74. http://dx.doi.org/10.4310/mrl.2005.v12.n1.a7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Rogalski, D., S. J. Sierra, and J. T. Stafford. "Noncommutative Blowups of Elliptic Algebras." Algebras and Representation Theory 18, no. 2 (October 29, 2014): 491–529. http://dx.doi.org/10.1007/s10468-014-9506-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Brešar, M., and J. Vukman. "Derivations of noncommutative Banach algebras." Archiv der Mathematik 59, no. 4 (October 1992): 363–70. http://dx.doi.org/10.1007/bf01197053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!