Littérature scientifique sur le sujet « Nonlocal equations in time »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nonlocal equations in time ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nonlocal equations in time"
Dong, Hongjie, Chulan Zeng et Qi S. Zhang. « Time Analyticity for Nonlocal Parabolic Equations ». SIAM Journal on Mathematical Analysis 55, no 3 (7 juin 2023) : 1883–915. http://dx.doi.org/10.1137/22m1490740.
Texte intégralDing, Xiao-Li, et Juan J. Nieto. « Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping terms ». Fractional Calculus and Applied Analysis 21, no 2 (25 avril 2018) : 312–35. http://dx.doi.org/10.1515/fca-2018-0019.
Texte intégralAblowitz, Mark J., et Ziad H. Musslimani. « Integrable space-time shifted nonlocal nonlinear equations ». Physics Letters A 409 (septembre 2021) : 127516. http://dx.doi.org/10.1016/j.physleta.2021.127516.
Texte intégralMorawetz, Klaus, Pavel Lipavský et Václav Špička. « Retarded versus Time-Nonlocal Quantum Kinetic Equations ». Annals of Physics 294, no 2 (décembre 2001) : 135–64. http://dx.doi.org/10.1006/aphy.2001.6197.
Texte intégralLv, Cong, Deqin Qiu et Q. P. Liu. « Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions ». Chaos : An Interdisciplinary Journal of Nonlinear Science 32, no 9 (septembre 2022) : 093120. http://dx.doi.org/10.1063/5.0088293.
Texte intégralCichoń, Mieczysław, Bianca Satco et Aneta Sikorska-Nowak. « Impulsive nonlocal differential equations through differential equations on time scales ». Applied Mathematics and Computation 218, no 6 (novembre 2011) : 2449–58. http://dx.doi.org/10.1016/j.amc.2011.07.057.
Texte intégralLudu, Andrei. « Nonlocal Symmetries for Time-Dependent Order Differential Equations ». Symmetry 10, no 12 (19 décembre 2018) : 771. http://dx.doi.org/10.3390/sym10120771.
Texte intégralFeng, Wei, et Song-Lin Zhao. « Soliton solutions to the nonlocal non-isospectral nonlinear Schrödinger equation ». International Journal of Modern Physics B 34, no 25 (9 septembre 2020) : 2050219. http://dx.doi.org/10.1142/s0217979220502197.
Texte intégralAshurov, Ravshan, et Yusuf Fayziev. « On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations ». Fractal and Fractional 6, no 1 (12 janvier 2022) : 41. http://dx.doi.org/10.3390/fractalfract6010041.
Texte intégralMa, Wen-Xiu. « Integrable nonlocal nonlinear Schrödinger equations associated with 𝑠𝑜(3,ℝ) ». Proceedings of the American Mathematical Society, Series B 9, no 1 (14 janvier 2022) : 1–11. http://dx.doi.org/10.1090/bproc/116.
Texte intégralThèses sur le sujet "Nonlocal equations in time"
Hariz, Belgacem Khader. « Higher-order Embedding Formalism, Noether’s Theorem on Time Scales and Eringen’s Nonlocal Elastica ». Electronic Thesis or Diss., Pau, 2022. https://theses.hal.science/tel-03981833.
Texte intégralThe aim of this thesis is to deal with the connection between continuous and discrete versions of a given object. This connection can be studied in two different directions: one going from a continuous setting to a discrete analogue, and in a symmetric way, from a discrete setting to a continuous one. The first procedure is typically used in numerical analysis in order to construct numerical integrators and the second one is typical of continuous modeling for the study of micro-structured materials.In this manuscript, we focus our attention on three distinct problems. In the first part, we propose a general framework precising different ways to derive a discrete version of a differential equation called discrete embedding formalism.More precisely, we exhibit three main discrete associate: the differential, integral or variational structure in both classical and high-order approximations.The second part focuses on the preservation of symmetries for discrete versions of Lagrangian and Hamiltonian systems, i.e., the discrete analogue of Noether's theorem.Finally, the third part applies these results in mechanics, i.e., the problem studied by N. Challamel, Kocsis and Wang called Eringen's nonlocal elastica equation which can beobtained by the continualization method. Precisely, we construct a discrete version of Eringen's nonlocal elastica then we study the difference with Challamel's proposal
Figueroa, Iglesias Susely. « Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments ». Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30098.
Texte intégralThis thesis focuses on the qualitative study of several parabolic equations of the Lotka-Volterra type from evolutionary biology and ecology taking into account a time-periodic growth rate and a non-local competition term. In the initial part we first study the dynamics of phenotypically structured populations under the effect of mutations and selection in environments that vary periodically in time and then the impact of a climate change on such population considering environmental conditions which vary according to a linear trend, but in an oscillatory manner. In both problems we first study the long-time behaviour of the solutions. Then we use an approach based on Hamilton-Jacobi equations to study these long-time solutions asymptotically when the effect of mutations is small. We prove that when the effect of mutations vanishes, the phenotypic density of the population is concentrated on a single trait (which varies linearly over time in the second model), while the population size oscillates periodically. For the climate change model we also provide an asymptotic expansion of the mean population size and of the critical speed leading to the extinction of the population, which is closely related to the derivation of an asymptotic expansion of the Floquet eigenvalue in terms of the diffusion rate. In the second part we study some particular examples of growth rates by providing explicit and semi-explicit solutions to the problem and present some numerical illustrations for the periodic model. In addition, being motivated by a biological experiment, we compare two populations evolved in different environments (constant or periodic). In addition, we present a numerical comparison between stochastic and deterministic models modelling the horizontal gene transfer phenomenon. In a Hamilton-Jacobi context, we are able to numerically reproduce the evolutionary rescue of a small population that we observe in the stochastic model
Belin, Théo. « On the free boundary of a forward-backward parabolic equation ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM040.
Texte intégralIn this thesis, we focus on a forward-backward parabolic problem and the free boundary arising from it. The equation models a phase change driven by a Stefan problem coupled with a time nonlocal hysteresis operator. Our study deals with some theoretical and numerical aspects raised by this type of time nonlocal equation, in particular regarding the free boundary.First, we establish an equivalence between entropy inequalities associated with the problem and a weak formulation of the hysteresis operator. This discovery motivates the construction of a finite-volume numerical scheme whose convergence to a solution is shown. The compactness of the sequence of approximate solutions is based on Hilpert's inequality. Numerical experiments in dimensions 1 and 2 support these results and illustrate the behaviour of the free boundary.Next we establish a general framework of viscosity solutions for front propagation problems which are nonlocl in space and time. They may include a coupling with a bulk evolution equation. A strict comparison theorem and an existence theorem derived from Perron's method are proved. The Stefan problem and some variations of it fall within this general framework.Finally, motivated by the study of parabolic equations in time-varying domains appearing in couplings of front propagation problems, we prove new results of maximal regularity in Lebesgue spaces. Of particular interest is the precise estimation of the regularity constant for nonautonomous and relatively continuous operators. These results lead to new growth conditions guaranteeing the existence of strong global solutions to abstract quasi-linear problems on a bounded time interval
Freitas, Pedro S. C. de. « Some problems in nonlocal reaction-diffusion equations ». Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1401.
Texte intégralBegg, Ronald Evan. « Cell-population growth modelling and nonlocal differential equations ». Thesis, University of Canterbury. Mathematics and Statistics, 2007. http://hdl.handle.net/10092/1165.
Texte intégralWang, Ying. « Contributions to local and nonlocal elliptic differential equations ». Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/134657.
Texte intégralEsta tesis doctoral está dividida en cuatro partes. La primera parte está dedicada al estudio de la simetría radial y las propiedades de monotonicidad de soluciones positivas de ecuaciones elípticas fraccionarias en la bola unitaria o en todo el espacio, usando el método de planos móviles. En la segunda parte, se consideran propiedades de decaimiento y simetría de las soluciones positivas para ecuaciones integro-diferenciales en todo el espacio. Estudiamos el decaimiento, construyendo super y subsoluciones apropiadas y usamos el método de los planos móviles para probar las propiedades de simetría. La tercera parte es investigar la existencia y unicidad de soluciones débiles de la ecuación del calor fraccionaria, involucrando medidas de Radon. Más aún, analizamos el comportamiento asintótico de la solución débil cuando la medida de Radon es la masa de Dirac. En la cuarta parte, estudiamos la existencia de soluciones a problemas elípticos no lineales que provienen del modelamiento de dispositivos de sistemas micro-electromecánicos en el caso en que la membrana elástica entra en contacto con la placa inferior en la frontera. Mostramos, en este caso, como el decaimiento de la membrana afecta la existencia de soluciones y la tensión pull-in.
Felsinger, Matthieu [Verfasser]. « Parabolic equations associated with symmetric nonlocal operators / Matthieu Felsinger ». Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1042557322/34.
Texte intégralWu, Lijiang. « Nonlocal Interaction Equations in Heterogeneous and Non-Convex Environments ». Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/474.
Texte intégralHollender, Julian. « Lévy-Type Processes under Uncertainty and Related Nonlocal Equations ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211795.
Texte intégralTopp, Paredes Erwin. « Some results for nonlocal elliptic and parabolic nonlinear equations ». Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/129978.
Texte intégral\quad Esta tesis est\'a dedicada al estudio de propiedades cualitativas de ecuaciones el\'ipticas degeneradas donde la difusi\'on es puramente no local, y se lleva a cabo en el contexto de la teor\'ia de soluciones viscosas. La primera parte de la tesis trata el estudio de propiedades de compacidad de una familia de \textsl{operadores no locales de orden cero}, es decir, operadores el\'ipticos no locales definidos a trav\'es de una medida finita. Consideramos un familia uni-param\'etrica de operadores de orden cero de la forma \begin \mathcal_\epsilon(u, x) = \int_ [u(x + z) - u(x)]K_\epsilon(z)dz, \end donde, para cada $\epsilon \in (0,1)$, $K_\epsilon \in L^1(\mathbb^N)$ es una funci\'on radialmente sim\'etrica y positiva. Configuramos nuestro problema de manera que $\mathcal_\epsilon$ aproxime el Laplaciano fraccionario cuando $\epsilon \to 0^+$, lo que implica que la norma $L^1$ de $K_\epsilon$ es no acotada a medida que $\epsilon \to 0^+$. Como primer resultado de esta parte obtenemos un m\'odulo de continuidad en espacio-tiempo para la familia de soluciones acotadas de la ecuaci\'on del calor no local en el plano asociada a $\mathcal_\epsilon$ que es independiente de $\epsilon \in (0,1)$. El segundo resultado de esta parte considera un problema de Dirichlet en un dominio acotado $\Omega \subset \mathbb^N$ asociado a $\mathcal_\epsilon$, y concluimos la compacidad de la familia de soluciones acotadas $\_\epsilon$ para estos problemas de Dirichlet encontrando un m\'odulo de continuidad com\'un en $\bar$ para $\_\epsilon$, que es independiente de $\epsilon$. \medskip La segunda parte de la tesis est\'a relacionada con la existencia y unicidad, regularidad y comportamiento a grandes tiempos para ecuaciones no locales con t\'erminos de gradiente dominantes. Comenzamos con la existencia y unicidad de una ecuaci\'on de Hamilton-Jacobi de la forma \begin{equation*} \begin{array}{rll} \lambda u - \mathcal{I}(u) + H(x, Du) & = 0 \quad & \mbox{en} \ \Omega \\ u & = \varphi \quad & \mbox{en} \ \Omega^c, \end{array} \end{equation*} donde el Hamiltoniano $H$ tiene una \textsl{forma de Bellman}. Estructuramos el problema de manera que el operador no local $\mathcal{I}$ es de orden menor que $1$ y por lo tanto puede aparecer una p\'erdida de la condici\'on de borde. En la segunda secci\'on de esta parte, consideramos $H$ coercivo con un crecimiento en el gradiente m\'as fuerte que el orden de la difusi\'on del operador no local. El resultado principal en este caso es la continuidad H\"older para \textsl{subsoluciones} para este problema. Estabilidad de las estimaciones de regularidad cuando $\lambda \to 0$ permiten concluir el comportamiento asint\'otico erg\'odico cuando $t \to \infty$ para el problema parab\'olico asociado en el toro. En esta tarea, principios del m\'aximo fuertes son de importancia mayor en el an\'alisis asint\'otico. Finalmente, adaptamos los resultados obtenidos en las primeras dos secciones de esta parte de la tesis para obtener el comportamiento a grandes tiempos para el problema de Cauchy-Dirichlet asociado a $H$ en las formas Bellman y coercivo. En este caso, la influencia del dato exterior en la ecuaci\'on a trav\'es del t\'ermino no local hace que el problema parab\'olico aproxime al correspondiente problema estacionario cuando $t \to \infty$.
Livres sur le sujet "Nonlocal equations in time"
E, Zorumski William, et Langley Research Center, dir. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.
Trouver le texte intégralE, Zorumski William, et Langley Research Center, dir. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.
Trouver le texte intégralE, Zorumski William, et Langley Research Center, dir. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.
Trouver le texte intégralAndreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I : American Mathematical Society, 2010.
Trouver le texte intégralShishmarev, I. A. (Ilʹi͡a︡ Andreevich)., dir. Nonlinear nonlocal equations in the theory of waves. Providence, R.I : American Mathematical Society, 1994.
Trouver le texte intégralNaumkin, P. I. Nonlinear nonlocal equations in the theory of waves. Providence, R.I : American Mathematical Society, 1994.
Trouver le texte intégralRoquejoffre, Jean-Michel. The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77772-1.
Texte intégral1958-, Biler Piotr, Karch Grzegorz et Nadzieja Tadeusz 1951-, dir. Nonlocal elliptic and parabolic problems : Proceedings of the conference held at Będlewo , September 12-15, 2003. Warszawa : Institute of Mathematics, Polish Academy of Sciences, 2004.
Trouver le texte intégralKamenskiĭ, G. A. Extrema of nonlocal functionals and boundary value problems for functional differential equations. Hauppauge, N.Y : Nova Science Publishers, 2007.
Trouver le texte intégralKubica, Adam, Katarzyna Ryszewska et Masahiro Yamamoto. Time-Fractional Differential Equations. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5.
Texte intégralChapitres de livres sur le sujet "Nonlocal equations in time"
Ablowitz, Mark J., et Ziad H. Musslimani. « Integrable Nonlocal PT Symmetric and Reverse Space-Time Nonlinear Schrödinger Equations ». Dans Springer Tracts in Modern Physics, 493–512. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1247-2_17.
Texte intégralMonvel, Anne Boutet de, Yan Rybalko et Dmitry Shepelsky. « Focusing Nonlocal Nonlinear Schrödinger Equation with Asymmetric Boundary Conditions : Large-Time Behavior ». Dans Toeplitz Operators and Random Matrices, 193–227. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13851-5_11.
Texte intégralChen, Jingkai. « Nonlocal Beam Equations ». Dans Nonlocal Euler–Bernoulli Beam Theories, 5–7. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69788-4_2.
Texte intégralGeorgiev, Slavi G., et Lubin G. Vulkov. « Recovering the Time-Dependent Volatility and Interest Rate in European Options from Nonlocal Price Measurements by Adjoint Equation Optimization ». Dans Advanced Computing in Industrial Mathematics, 45–55. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20951-2_5.
Texte intégralHeimsoeth, B., et H. Lange. « Nonlocal Nonlinear Schrödinger Equations ». Dans Semigroup Theory and Evolution Equations, 243–57. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003419914-17.
Texte intégralVolpert, Vitaly. « Nonlocal Reaction-diffusion Equations ». Dans Elliptic Partial Differential Equations, 521–626. Basel : Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0813-2_9.
Texte intégralMeher, Ramakanta. « Nonlocal Existence Theorem ». Dans Textbook on Ordinary Differential Equations, 47–80. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003360643-4.
Texte intégralKrasil’ shchik, I. S., et P. H. M. Kersten. « Nonlocal theory ». Dans Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations, 99–153. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-3196-6_3.
Texte intégralFoss, Mikil D., Petronela Radu et Laura White. « Doubly Nonlocal Cahn–Hilliard Equations ». Dans Association for Women in Mathematics Series, 239–55. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04496-0_10.
Texte intégralRodríguez-Bernal, Aníbal, et Silvia Sastre-Gómez. « Nonlinear Nonlocal Reaction-Diffusion Equations ». Dans Advances in Differential Equations and Applications, 53–61. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06953-1_6.
Texte intégralActes de conférences sur le sujet "Nonlocal equations in time"
Yamazaki, Noriaki. « Optimal control of nonlinear evolution equations associated with time-dependent subdifferentials and applications ». Dans Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-20.
Texte intégralHishida, Toshiaki. « THE Navier-stokes flow around a rotating obstacle with time-dependent body force ». Dans Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw : Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-9.
Texte intégralJakobsen, P. K., P. Ru et J. V. Moloney. « Nonlocal adiabatic elimination ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mpp6.
Texte intégralDrin, Yaroslav M., I. I. Drin et S. S. Drin. « Representation of solution for fully nonlocal diffusion equations with deviation time variable ». Dans Correlation Optics 2017, sous la direction de Oleg V. Angelsky. SPIE, 2018. http://dx.doi.org/10.1117/12.2304312.
Texte intégralNallathambi, K., A. Santhi et V. Govindan. « Fractional nonlocal integro-differential equations with time-varying generating operators and optimal control ». Dans INTERNATIONAL CONFERENCE ON RECENT TRENDS IN PURE AND APPLIED MATHEMATICS (ICRTPAM-2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0106502.
Texte intégralAshyralyev, Allaberen, et Charyyar Ashyralyyev. « Numerical solution of time-nonlocal problem for parabolic equation ». Dans 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0114878.
Texte intégralRu, P., P. K. Jakobsen et J. V. Moloney. « Nonlocal Adiabatic Elimination in the Maxwell-Bloch Equation ». Dans Nonlinear Dynamics in Optical Systems. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc6.
Texte intégralHamed, M., et K. Saanouni. « Elastoplastic Nonlocal Micromorphic Formulations With Damage Gradient ». Dans ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82928.
Texte intégralYang, Ronggui, et Gang Chen. « Two-Dimensional Nanoscale Heat Conduction Using Ballistic-Diffusive Equations ». Dans ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24141.
Texte intégralNabelek, Patrik, et Solomon C. Yim. « Riemann-Hilbert Formulation and Solution of Nonlinear Shallow-Water Wave Equations : Nonlocal Dbar Problem as a Unified Approach to Computing Exact Solutions in the Time Domain ». Dans ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-108051.
Texte intégralRapports d'organisations sur le sujet "Nonlocal equations in time"
Kunz, Christopher. Nonlocal fractional equations from random walks. Ames (Iowa) : Iowa State University, décembre 2023. http://dx.doi.org/10.31274/cc-20240624-1063.
Texte intégralD'Elia, Marta, Eugenio Aulisa, Giacomo Capodaglio et Andrea Chierici. Efficient quadrature rules for finite element discretizations of nonlocal equations. Office of Scientific and Technical Information (OSTI), janvier 2021. http://dx.doi.org/10.2172/1763180.
Texte intégralWorley, P. H. Parallelizing across time when solving time-dependent partial differential equations. Office of Scientific and Technical Information (OSTI), septembre 1991. http://dx.doi.org/10.2172/6026480.
Texte intégralRau, A. Ravi P. Solving time-dependent operator equations for nanoscale physics. Office of Scientific and Technical Information (OSTI), août 2007. http://dx.doi.org/10.2172/913061.
Texte intégralGottlieb, David. Spectral Methods for Time Dependent Partial Differential Equations. Fort Belvoir, VA : Defense Technical Information Center, novembre 1986. http://dx.doi.org/10.21236/ada182809.
Texte intégralGottlieb, David. High-Order Time-Domain Methods for Maxwells Equations. Fort Belvoir, VA : Defense Technical Information Center, août 2000. http://dx.doi.org/10.21236/ada387163.
Texte intégralHills, Richard G. Addressing Model Form Error for Time-Dependent Conservation Equations. Office of Scientific and Technical Information (OSTI), septembre 2015. http://dx.doi.org/10.2172/1490528.
Texte intégralZhiquiang, C., et J. Jones. Least-Squares Approaches for the Time-Dependent Maxwell Equations. Office of Scientific and Technical Information (OSTI), décembre 2001. http://dx.doi.org/10.2172/15002754.
Texte intégralShang, J. S. Characteristic Based Methods for the Time-Domain Maxwell Equations. Fort Belvoir, VA : Defense Technical Information Center, août 1993. http://dx.doi.org/10.21236/ada272973.
Texte intégralPerugia, I., D. Schoetzau et P. Monk. Stabilized Interior Penalty Methods for the Time-Harmonic Maxwell Equations. Fort Belvoir, VA : Defense Technical Information Center, août 2001. http://dx.doi.org/10.21236/ada437465.
Texte intégral