Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nonlocal equations in time.

Livres sur le sujet « Nonlocal equations in time »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs livres pour votre recherche sur le sujet « Nonlocal equations in time ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

E, Zorumski William, et Langley Research Center, dir. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

E, Zorumski William, et Langley Research Center, dir. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

E, Zorumski William, et Langley Research Center, dir. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Andreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I : American Mathematical Society, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shishmarev, I. A. (Ilʹi͡a︡ Andreevich)., dir. Nonlinear nonlocal equations in the theory of waves. Providence, R.I : American Mathematical Society, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Naumkin, P. I. Nonlinear nonlocal equations in the theory of waves. Providence, R.I : American Mathematical Society, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Roquejoffre, Jean-Michel. The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77772-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1958-, Biler Piotr, Karch Grzegorz et Nadzieja Tadeusz 1951-, dir. Nonlocal elliptic and parabolic problems : Proceedings of the conference held at Będlewo , September 12-15, 2003. Warszawa : Institute of Mathematics, Polish Academy of Sciences, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kamenskiĭ, G. A. Extrema of nonlocal functionals and boundary value problems for functional differential equations. Hauppauge, N.Y : Nova Science Publishers, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kubica, Adam, Katarzyna Ryszewska et Masahiro Yamamoto. Time-Fractional Differential Equations. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

E, Zorumski W., Watson Willie R et Langley Research Center, dir. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

E, Zorumski W., Watson Willie R et Langley Research Center, dir. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Georgiev, Svetlin G. Integral Equations on Time Scales. Paris : Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Bohner, Martin, et Allan Peterson. Dynamic Equations on Time Scales. Boston, MA : Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wang, Gengsheng, Lijuan Wang, Yashan Xu et Yubiao Zhang. Time Optimal Control of Evolution Equations. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95363-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Georgiev, Svetlin G. Functional Dynamic Equations on Time Scales. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

1953-, Rao S. M., dir. Time domain electromagnetics. San Diego : Academic Press, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Pötter, Ulrich. Models for interdependent decisions over time. Colchester : European Science Foundation, Scientific Network on Household Panel Studies, University of Essex, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Center, Langley Research, et Institute for Computer Applications in Science and Engineering., dir. Spectral methods in time for parabolic problems. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bertil, Gustafsson. Time dependent problems and difference methods. New York : Wiley, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Farina, Alberto, et Jean-Claude Saut, dir. Stationary and Time Dependent Gross-Pitaevskii Equations. Providence, Rhode Island : American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bohner, Martin, et Allan Peterson, dir. Advances in Dynamic Equations on Time Scales. Boston, MA : Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Andersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm : Tekniska ho gsk., 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

1966-, Bohner Martin, et Peterson Allan C, dir. Advances in dynamic equations on time scales. Boston : Birkhäuser, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

name, No. Advances in dynamic equations on time scales. Boston, MA : Birkhuser, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Pyke, Randall Mitchell. Time periodic solutions of nonlinear wave equations. Toronto : [s.n.], 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Agarwal, Ravi P., Bipan Hazarika et Sanket Tikare. Dynamic Equations on Time Scales and Applications. Boca Raton : Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003467908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Gustafsson, Bertil. Time dependent problems and difference methods. New York : Wiley, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Martynyuk, Anatoly A. Stability Theory for Dynamic Equations on Time Scales. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42213-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gal, Ciprian G., et Mahamadi Warma. Fractional-in-Time Semilinear Parabolic Equations and Applications. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45043-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kirsch, Andreas, et Frank Hettlich. The Mathematical Theory of Time-Harmonic Maxwell's Equations. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11086-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26645-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

S, Liou M., Povinelli Louis A et United States. National Aeronautics and Space Administration., dir. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC] : National Aeronautics and Space Administration, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

E, Turkel, et United States. National Aeronautics and Space Administration, dir. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, VA : Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

E, Turkel, et United States. National Aeronautics and Space Administration, dir. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, VA : Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

S, Liou M., Povinelli Louis A et United States. National Aeronautics and Space Administration., dir. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC] : National Aeronautics and Space Administration, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

S, Liou M., Povinelli Louis A et United States. National Aeronautics and Space Administration., dir. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC] : National Aeronautics and Space Administration, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Swanson, R. Charles. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, Va : ICASE, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Morawetz, Klaus. Nonlocal Collision Integral. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0013.

Texte intégral
Résumé :
The kinetic equation with the nonlocal shifts is presented as the final result on the way to derive the kinetic equation with nonlocal corrections. The exclusive dependence of the nonlocal and non-instant corrections on the scattering phase shift confirms the results from the theory of gases. With the approximation on the level of the Brueckner reaction matrix, the corresponding non-instant and nonlocal scattering integral in parallel with the classical Enskog’s equation, can be treated with Monte-Carlo simulation techniques. Neglecting the shifts, the Landau theory of quasiparticle transport appears. In this sense the presented kinetic theory unifies both approaches. An intrinsic symmetry is found from the optical theorem which allows for representing the collision integral equivalently either in particle-hole symmetric or space-time symmetric form.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Morawetz, Klaus. Nonequilibrium Quantum Hydrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0015.

Texte intégral
Résumé :
The balance equations resulting from the nonlocal kinetic equation are derived. They show besides the Landau-like quasiparticle contributions explicit two-particle correlated parts which can be interpreted as molecular contributions. It looks like as if two particles form a short-living molecule. All observables like density, momentum and energy are found as a conserving system of balance equations where the correlated parts are in agreement with the forms obtained when calculating the reduced density matrix with the extended quasiparticle functional. Therefore the nonlocal kinetic equation for the quasiparticle distribution forms a consistent theory. The entropy is shown to consist also of a quasiparticle part and a correlated part. The explicit entropy gain is proved to complete the H-theorem even for nonlocal collision events. The limit of Landau theory is explored when neglecting the delay time. The rearrangement energy is found to mediate between the spectral quasiparticle energy and the Landau variational quasiparticle energy.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Morawetz, Klaus. Properties of Non-Instant and Nonlocal Corrections. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0014.

Texte intégral
Résumé :
The derived nonlocal and non-instant shifts are discussed with respect to various symmetries and gauges. The classical counterparts are derived and found in agreement with the expected phenomenological ones from chapter 3. The explicit forms of the hard-sphere like offsets and the delay time in terms of the scattering phase shifts are calculated and discussed on the example of nuclear collision. The numerical results reveal an interesting inside into the microscopic correlations developed in dependence on the scattering angle and scattering energy. The just-accomplished derivation of the nonlocal scattering integrals is far from being intuitive. We have reached our task, the kinetic equation, being guided by nothing but systematic implementation of the quasiclassical approximation and the limit of small scattering rates.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Morawetz, Klaus. Simulations of Heavy-Ion Reactions with Nonlocal Collisions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0023.

Texte intégral
Résumé :
The scenario of heavy-ion reactions around the Fermi energy is explored. The quantum BUU equation is solved numerically with and without nonlocal corrections and the effect of nonlocal corrections on experimental values is calculated. A practical recipe is presented which allows reproducing the correct asymptotes of scattering by acting on the point of closest approach. The better description of dynamical correlations by the nonlocal kinetic equation is demonstrated by an enhancement of the high-energy part of the particle spectra and the enhancement of mid-rapidity charge distributions. The time-resolved solution shows the enhancement of neck formation. It is shown that the dissipated energy increases due to the nonlocal collision scenario which is responsible for the observed effects and not due to the enhancement of collisions. As final result, a method is presented how to incorporate the effective mass and quasiparticle renormalisation with the help of the nonlocal simulation scenario.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Texte intégral
Résumé :
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle sources leads to a chain of coupled Green’s function equations involving differing species of Green’s functions. For example, the 1-electron Green’s function equation is coupled to the 2-electron Green’s function (as earlier), also to the 1-electron/1-hole Green’s function, and to the Green’s function for 1-electron propagation influenced by a nontrivial phonon field. Similar remarks apply to the 1-hole Green’s function equation, and all others. Higher order Green’s function equations are derived by further variational differentiation with respect to sources, yielding additional couplings. Chapter 11 also introduces the 1-phonon Green’s function, emphasizing the role of electron coupling in phonon propagation, leading to dynamic, nonlocal electron screening of the phonon spectrum and hybridization of the ion and electron plasmons, a Bohm-Staver phonon mode, and the Kohn anomaly. Furthermore, the single-electron Green’s function with only phonon coupling can be rewritten, as usual, coupled to the 2-electron Green’s function with an effective time-dependent electron-electron interaction potential mediated by the 1-phonon Green’s function, leading to the polaron as an electron propagating jointly with its induced lattice polarization. An alternative formulation of the coupled Green’s function equations for the electron-hole-phonon model is applied in the development of a generalized shielded potential approximation, analysing its inverse dielectric screening response function and associated hybridized collective modes. A brief discussion of the (theoretical) origin of the exciton-plasmon interaction follows.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Nonlocal diffusion problems. Providence, R.I : American Mathematical Society, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Nonlocal and abstract parabolic equations and their applications. Warszawa : Institute of Mathematics, Polish Academy of Sciences, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Necula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică et Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Necula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică et Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Necula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică et Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie