Littérature scientifique sur le sujet « Numbers »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Numbers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Numbers"

1

Bisht, Swati, and Anand Singh Uniyal. "A Curious Connection between Fermats Number and Multiple Factoriangular Numbers." International Journal of Science and Research (IJSR) 10, no. 4 (April 27, 2021): 539–40. https://doi.org/10.21275/sr21310103215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Montémont, Véronique. "Roubaud’s number on numbers." Journal of Romance Studies 7, no. 3 (December 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers." Applied Mathematics 13, no. 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Steele, G. Ander. "Carmichael numbers in number rings." Journal of Number Theory 128, no. 4 (April 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic." Philosophical Review 114, no. 2 (April 1, 2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chandrasekaran, Keerthivasan. "The Sequential Even and Odd Number Identification in Decimal Numbers by Formula." International Journal of Science and Research (IJSR) 11, no. 3 (March 5, 2022): 1415–16. http://dx.doi.org/10.21275/sr22328213735.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu, and A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers." International Journal of Science and Research (IJSR) 12, no. 11 (November 5, 2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

KÖKEN, Fikri, and Emre KANKAL. "Altered Numbers of Fibonacci Number Squared." Journal of New Theory, no. 45 (December 31, 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Texte intégral
Résumé :
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
Styles APA, Harvard, Vancouver, ISO, etc.
9

., Jyoti. "Rational Numbers." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (July 1, 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boast, Carl A., and Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, no. 3 (July 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Numbers"

1

Namasivayam, M. "Entropy numbers, s-numbers and embeddings." Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Allagan, Julian Apelete D. Johnson Peter D. "Choice numbers, Ohba numbers and Hall numbers of some complete k-partite graphs." Auburn, Ala, 2009. http://hdl.handle.net/10415/1780.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fransson, Jonas. "Generalized Fibonacci Series Considered modulo n." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-26844.

Texte intégral
Résumé :
In this thesis we are investigating identities regarding Fibonacci sequences. In particular we are examiningthe so called Pisano period, which is the period for the Fibonacci sequence considered modulo n to repeatitself. The theory shows that it suces to compute Pisano periods for primes. We are also looking atthe same problems for the generalized Pisano period, which can be described as the Pisano period forthe generalized Fibonacci sequence.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Anderson, Crystal Lynn. "An Introduction to Number Theory Prime Numbers and Their Applications." Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2222.

Texte intégral
Résumé :
The author has found, during her experience teaching students on the fourth grade level, that some concepts of number theory haven't even been introduced to the students. Some of these concepts include prime and composite numbers and their applications. Through personal research, the author has found that prime numbers are vital to the understanding of the grade level curriculum. Prime numbers are used to aide in determining divisibility, finding greatest common factors, least common multiples, and common denominators. Through experimentation, classroom examples, and homework, the author has introduced students to prime numbers and their applications.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chipatala, Overtone. "Polygonal numbers." Kansas State University, 2016. http://hdl.handle.net/2097/32923.

Texte intégral
Résumé :
Master of Science<br>Department of Mathematics<br>Todd Cochrane<br>Polygonal numbers are nonnegative integers constructed and represented by geometrical arrangements of equally spaced points that form regular polygons. These numbers were originally studied by Pythagoras, with their long history dating from 570 B.C, and are often referred to by the Greek mathematicians. During the ancient period, polygonal numbers were described by units which were expressed by dots or pebbles arranged to form geometrical polygons. In his "Introductio Arithmetica", Nicomachus of Gerasa (c. 100 A.D), thoroughly discussed polygonal numbers. Other Greek authors who did remarkable work on the numbers include Theon of Smyrna (c. 130 A.D), and Diophantus of Alexandria (c. 250 A.D). Polygonal numbers are widely applied and related to various mathematical concepts. The primary purpose of this report is to define and discuss polygonal numbers in application and relation to some of these concepts. For instance, among other topics, the report describes what triangle numbers are and provides many interesting properties and identities that they satisfy. Sums of squares, including Lagrange's Four Squares Theorem, and Legendre's Three Squares Theorem are included in the paper as well. Finally, the report introduces and proves its main theorems, Gauss' Eureka Theorem and Cauchy's Polygonal Number Theorem.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tomasini, Alejandro. "Wittgensteinian Numbers." Pontificia Universidad Católica del Perú - Departamento de Humanidades, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/112986.

Texte intégral
Résumé :
In this paper I reconstruct the tractarian view of natural numbers. i show how Wittgenstein uses his conceptual apparatus (operatlon, formal concept, internal property, logical form) to elaborate analternative to the logicist definition of number. Finally, I briefly examine sorneof the criticisms that have been raised against it.<br>En este trabajo reconstruyo la concepción tractariana de los números naturales. Muestro cómo Wittgenstein usa su aparato conceptual (operación, conceptoformal, propiedad interna, forma lógica) para elaborar una definición de número alternativa a la logicista. Por último, examino brevemente algunas de lascríticas que se han elevado en su contra.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hostetler, Joshua. "Surreal Numbers." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2935.

Texte intégral
Résumé :
The purpose of this thesis is to explore the Surreal Numbers from an elementary, con- structivist point of view, with the intention of introducing the numbers in a palatable way for a broad audience with minimal background in any specific mathematical field. Created from two recursive definitions, the Surreal Numbers form a class that contains a copy of the real numbers, transfinite ordinals, and infinitesimals, combinations of these, and in- finitely many numbers uniquely Surreal. Together with two binary operations, the surreal numbers form a field. The existence of the Surreal Numbers is proven, and the class is constructed from nothing, starting with the integers and dyadic rationals, continuing into the transfinite ordinals and the remaining real numbers, and culminating with the infinitesimals and uniquely surreal numbers. Several key concepts are proven regarding the ordering and containment properties of the numbers. The concept of a surreal continuum is introduced and demonstrated. The binary operations are explored and demonstrated, and field properties are proven, using many methods, including transfinite induction.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ho, Kwan-hung, and 何君雄. "On the prime twins conjecture and almost-prime k-tuples." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29768421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chan, Ching-yin, and 陳靖然. "On k-tuples of almost primes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ketkar, Pallavi S. (Pallavi Subhash). "Primitive Substitutive Numbers are Closed under Rational Multiplication." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.

Texte intégral
Résumé :
Lehr (1991) proved that, if M(q, r) denotes the set of real numbers whose expansion in base-r is q-automatic i.e., is recognized by an automaton A = (Aq, Ar, ao, δ, φ) (or is the image under a letter to letter morphism of a fixed point of a substitution of constant length q) then M(q, r) is closed under addition and rational multiplication. Similarly if we let M(r) denote the set of real numbers α whose base-r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution then in an attempt to generalize Lehr's result we show that the set M(r) is closed under multiplication by rational numbers. We also show that M(r) is not closed under addition.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Numbers"

1

Badiou, Alain. Number and numbers. Cambridge: Polity Press, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1934-, Deza M., ed. Figurate numbers. Singapore: World Scientific, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schleich, Wolfgang. Prime numbers 101: A primer on number theory. Hoboken, N.J: Wiley, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

illustrator, Knight Paula, ed. Numbers. Chicago, Illinois: Norwood House Press, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Aboff, Marcie. If you were an odd number. Mankato, MN: Picture Window Books, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Glynne-Jones, Tim. The book of numbers. Edison, NJ: Chartwell Books, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Montgomery, Hugh L. Multiplicative number theory I: Classical theory. Cambridge, UK: Cambridge University Press, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Parshin, A. N. Number Theory IV: Transcendental Numbers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ming, Nai-Ta. New theory of real numbers especially regarding "infinite" and "zero". Hamburg: Verlag Dr. Kovač, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dave, Hewitt, Wigley Alan, and Association of Teachers of Mathematics., eds. Developing number: Complements, numbers, tables. Derby: Association of Teachers of Mathematics, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Numbers"

1

Legrand, Pierre. "Numbers' number." In The Negative Turn in Comparative Law, 128–91. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003162070-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hart, F. Mary. "Numbers and Number Systems." In Guide to Analysis, 1–24. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09390-8_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hart, F. Mary. "Numbers and Number Systems." In Guide to Analysis, 3–29. London: Macmillan Education UK, 2001. http://dx.doi.org/10.1007/978-1-349-87194-0_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Agarwal, Ravi P. "Numbers and Number Mysticism." In Mathematics Before and After Pythagoras, 43–130. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-74224-8_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Loya, Paul. "Numbers, Numbers, and More Numbers." In Amazing and Aesthetic Aspects of Analysis, 29–146. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6795-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vorobiew, Nicolai N. "Number-Theoretic Properties of Fibonacci Numbers." In Fibonacci Numbers, 51–87. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8107-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cornil, Jack-Michel, and Philippe Testud. "Real Numbers, Complex Numbers." In An Introduction to Maple V, 57–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56729-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rassias, Michael Th. "Perfect numbers, Fermat numbers." In Problem-Solving and Selected Topics in Number Theory, 29–35. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0495-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pólya, George, and Gabor Szegö. "Complex Numbers and Number Sequences." In Problems and Theorems in Analysis I, 103–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-61983-0_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Coppel, W. A. "The Number of Prime Numbers." In Number Theory, 363–98. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-89486-7_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Numbers"

1

Mahendra, Rahmad, Damiano Spina, Lawrence Cavedon, and Karin Verspoor. "Do Numbers Matter? Types and Prevalence of Numbers in Clinical Texts." In Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, 409–15. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.bionlp-1.32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lim, John T., and Larry C. Thaler. "Numbers, Numbers Everywhere!" In SMPTE Advanced Television and Electronic Imaging Conference. IEEE, 1993. http://dx.doi.org/10.5594/m00684.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Milinkovic, Luka, Marija Antic, and Zoran Cica. "Pseudo-random number generator based on irrational numbers." In TELSIKS 2011 - 2011 10th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2011. http://dx.doi.org/10.1109/telsks.2011.6143212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kochetov, A., and S. Frolov. "CONVERTING NUMBERS FROM ONE NUMBER SYSTEM TO ANOTHER." In CHALLENGING ISSUES IN SYSTEMS MODELING AND PROCESSES, 343–48. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2025. https://doi.org/10.58168/cismp2024_343-348.

Texte intégral
Résumé :
This paper has analyzed in detail various number systems and their applications in computer science. Algorithms for translating numbers between number systems (decimal, binary, octal and hexadecimal) and their use in programming have been considered. Examples of implementation of translation algorithms and program tools illustrate the practical applicability of this knowledge.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Watanabe, Ricardo Augusto, Estevao Esmi Laureano, and Cibele Cristina Trinca Watanabe. "Fuzzy Octonion Numbers and Fuzzy Hypercomplex Numbers." In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019. http://dx.doi.org/10.1109/fuzz-ieee.2019.8858970.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Irmak, Nurettin, and Abdullah Açikel. "On perfect numbers close to Tribonacci numbers." In 1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5047878.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hajime, Kaneko, and Takao Komatsu. "Expansion of real numbers by algebraic numbers." In DIOPHANTINE ANALYSIS AND RELATED FIELDS: DARF 2007/2008. AIP, 2008. http://dx.doi.org/10.1063/1.2841897.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Berthe, Valerie, and Laurent Imbert. "On converting numbers to the double-base number system." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Franklin T. Luk. SPIE, 2004. http://dx.doi.org/10.1117/12.558895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jeong, Young-Seob, Kyojoong Oh, Chung-Ki Cho, and Ho-Jin Choi. "Pseudo Random Number Generation Using LSTMs and Irrational Numbers." In 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2018. http://dx.doi.org/10.1109/bigcomp.2018.00091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sirisantisamrid, Kaset. "Identification of Thai characters and numbers on plate number." In 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2017. http://dx.doi.org/10.1109/iciteed.2017.8250447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Numbers"

1

Reynolds, J. K., and J. Postel. Assigned numbers. RFC Editor, April 1985. http://dx.doi.org/10.17487/rfc0943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Reynolds, J. K., and J. Postel. Assigned numbers. RFC Editor, December 1985. http://dx.doi.org/10.17487/rfc0960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Reynolds, J. K., and J. Postel. Assigned numbers. RFC Editor, November 1986. http://dx.doi.org/10.17487/rfc0990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Reynolds, J. K., and J. Postel. Internet numbers. RFC Editor, March 1987. http://dx.doi.org/10.17487/rfc0997.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Reynolds, J. K., and J. Postel. Assigned numbers. RFC Editor, May 1987. http://dx.doi.org/10.17487/rfc1010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Romano, S., and M. K. Stahl. Internet numbers. RFC Editor, November 1987. http://dx.doi.org/10.17487/rfc1020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Reynolds, J. K., and J. Postel. Assigned numbers. RFC Editor, March 1990. http://dx.doi.org/10.17487/rfc1060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Romano, S., M. K. Stahl, and M. Recker. Internet numbers. RFC Editor, August 1988. http://dx.doi.org/10.17487/rfc1062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Romano, S., M. K. Stahl, and M. Recker. Internet numbers. RFC Editor, August 1989. http://dx.doi.org/10.17487/rfc1117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kirkpatrick, S., M. K. Stahl, and M. Recker. Internet numbers. RFC Editor, July 1990. http://dx.doi.org/10.17487/rfc1166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie