Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Numbers.

Articles de revues sur le sujet « Numbers »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Numbers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Bisht, Swati, and Anand Singh Uniyal. "A Curious Connection between Fermats Number and Multiple Factoriangular Numbers." International Journal of Science and Research (IJSR) 10, no. 4 (April 27, 2021): 539–40. https://doi.org/10.21275/sr21310103215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Montémont, Véronique. "Roubaud’s number on numbers." Journal of Romance Studies 7, no. 3 (December 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers." Applied Mathematics 13, no. 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Steele, G. Ander. "Carmichael numbers in number rings." Journal of Number Theory 128, no. 4 (April 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic." Philosophical Review 114, no. 2 (April 1, 2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chandrasekaran, Keerthivasan. "The Sequential Even and Odd Number Identification in Decimal Numbers by Formula." International Journal of Science and Research (IJSR) 11, no. 3 (March 5, 2022): 1415–16. http://dx.doi.org/10.21275/sr22328213735.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu, and A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers." International Journal of Science and Research (IJSR) 12, no. 11 (November 5, 2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

KÖKEN, Fikri, and Emre KANKAL. "Altered Numbers of Fibonacci Number Squared." Journal of New Theory, no. 45 (December 31, 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Texte intégral
Résumé :
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
Styles APA, Harvard, Vancouver, ISO, etc.
9

., Jyoti. "Rational Numbers." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (July 1, 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boast, Carl A., and Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, no. 3 (July 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jędrzejak, Tomasz. "Congruent numbers over real number fields." Colloquium Mathematicum 128, no. 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Fu, Ruiqin, Hai Yang, and Jing Wu. "The Perfect Numbers of Pell Number." Journal of Physics: Conference Series 1237 (June 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Day, Sophie, Celia Lury, and Nina Wakeford. "Number ecologies: numbers and numbering practices." Distinktion: Journal of Social Theory 15, no. 2 (May 4, 2014): 123–54. http://dx.doi.org/10.1080/1600910x.2014.923011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

AKTAŞ, KEVSER, and M. RAM MURTY. "On the number of special numbers." Proceedings - Mathematical Sciences 127, no. 3 (January 31, 2017): 423–30. http://dx.doi.org/10.1007/s12044-016-0326-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Felka, Katharina. "Number words and reference to numbers." Philosophical Studies 168, no. 1 (April 3, 2013): 261–82. http://dx.doi.org/10.1007/s11098-013-0129-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

De Koninck, Jean-Marie, and Florian Luca. "Counting the number of economical numbers." Publicationes Mathematicae Debrecen 68, no. 1-2 (January 1, 2006): 97–113. http://dx.doi.org/10.5486/pmd.2006.3171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Fellows, Michael R., Serge Gaspers, and Frances A. Rosamond. "Parameterizing by the Number of Numbers." Theory of Computing Systems 50, no. 4 (October 29, 2011): 675–93. http://dx.doi.org/10.1007/s00224-011-9367-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Goddard, Cliff. "The conceptual semantics of numbers and counting." Functions of Language 16, no. 2 (October 22, 2009): 193–224. http://dx.doi.org/10.1075/fol.16.2.02god.

Texte intégral
Résumé :
This study explores the conceptual semantics of numbers and counting, using the natural semantic metalanguage (NSM) technique of semantic analysis (Wierzbicka 1996; Goddard & Wierzbicka (eds.) 2002). It first argues that the concept of a number in one of its senses (number1, roughly, “number word”) and the meanings of low number words, such as one, two, and three, can be explicated directly in terms of semantic primes, without reference to any counting procedures or practices. It then argues, however, that the larger numbers, and the productivity of the number sequence, depend on the concept and practice of counting, in the intransitive sense of the verb. Both the intransitive and transitive senses of counting are explicated, and the semantic relationship between them is clarified. Finally, the study moves to the semantics of abstract numbers (number2), roughly, numbers as represented by numerals, e.g. 5, 15, 27, 36, as opposed to number words. Though some reference is made to cross-linguistic data and cultural variation, the treatment is focused primarily on English.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Froman, Robin D. "Numbers, numbers everywhere?" Research in Nursing & Health 27, no. 3 (2004): 145–47. http://dx.doi.org/10.1002/nur.20020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bhutani, Kiran R., and Alexander B. Levin. "Graceful numbers." International Journal of Mathematics and Mathematical Sciences 29, no. 8 (2002): 495–99. http://dx.doi.org/10.1155/s0161171202007615.

Texte intégral
Résumé :
We construct a labeled graphD(n)that reflects the structure of divisors of a given natural numbern. We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Thompson, K., J. G. Hodgson, J. P. Grime, I. H. Rorison, S. R. Band, and R. E. Spencer. "Ellenberg numbers revisited." Phytocoenologia 23, no. 1-4 (December 15, 1993): 277–89. http://dx.doi.org/10.1127/phyto/23/1993/277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Venkateswara Rao, V., and Y. Srinivasa Rao. "Numbers Occupying Universal." International Journal of Scientific Engineering and Research 6, no. 6 (June 27, 2017): 1–4. https://doi.org/10.70729/ijser151497.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ndiaye, Mady. "Origin of Sexy Prime Numbers, Origin of Cousin Prime Numbers, Equations from Supposedly Prime Numbers, Origin of the Mersenne Number, Origin of the Fermat Number." Advances in Pure Mathematics 14, no. 05 (2024): 321–32. http://dx.doi.org/10.4236/apm.2024.145018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kazda, Alexandr, and Petr Kùrka. "Representing real numbers in Möbius number systems." Actes des rencontres du CIRM 1, no. 1 (2009): 35–39. http://dx.doi.org/10.5802/acirm.7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Smil, Vaclav. "Unemployment: Pick a number [Numbers Don't Lie]." IEEE Spectrum 54, no. 5 (May 2017): 24. http://dx.doi.org/10.1109/mspec.2017.7906894.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Frougny, Christiane, and Karel Klouda. "Rational base number systems forp-adic numbers." RAIRO - Theoretical Informatics and Applications 46, no. 1 (August 22, 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Webb, William A. "The N-Number Game for Real Numbers." European Journal of Combinatorics 8, no. 4 (October 1987): 457–60. http://dx.doi.org/10.1016/s0195-6698(87)80053-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Daileda, Ryan C., Raju Krishnamoorthy, and Anton Malyshev. "Maximal class numbers of CM number fields." Journal of Number Theory 130, no. 4 (April 2010): 936–43. http://dx.doi.org/10.1016/j.jnt.2009.09.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kovács, B. "Representation of complex numbers in number systems." Acta Mathematica Hungarica 58, no. 1-2 (March 1991): 113–20. http://dx.doi.org/10.1007/bf01903553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jen-Shiun Chiang and Mi Lu. "Floating-point numbers in residue number systems." Computers & Mathematics with Applications 22, no. 10 (1991): 127–40. http://dx.doi.org/10.1016/0898-1221(91)90200-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Chang, Ku-Young, and Soun-Hi Kwon. "Class numbers of imaginary abelian number fields." Proceedings of the American Mathematical Society 128, no. 9 (April 27, 2000): 2517–28. http://dx.doi.org/10.1090/s0002-9939-00-05555-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Figotin, A., A. Gordon, J. Quinn, N. Stavrakas, and S. Molchanov. "Occupancy Numbers in Testing Random Number Generators." SIAM Journal on Applied Mathematics 62, no. 6 (January 2002): 1980–2011. http://dx.doi.org/10.1137/s0036139900366869.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bertin, Marie José, and Toufik Zaïmi. "Complex Pisot numbers in algebraic number fields." Comptes Rendus Mathematique 353, no. 11 (November 2015): 965–67. http://dx.doi.org/10.1016/j.crma.2015.09.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

De Koninck, J. M., N. Doyon, and I. Kátai. "Counting the number of twin Niven numbers." Ramanujan Journal 17, no. 1 (July 12, 2008): 89–105. http://dx.doi.org/10.1007/s11139-008-9127-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Caglayan, Günhan. "Covering a Triangular Number with Pentagonal Numbers." Mathematical Intelligencer 42, no. 1 (December 16, 2019): 55. http://dx.doi.org/10.1007/s00283-019-09953-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chang, Ku-Young, and Soun-Hi Kwon. "The imaginary abelian number fields with class numbers equal to their genus class numbers." Journal de Théorie des Nombres de Bordeaux 12, no. 2 (2000): 349–65. http://dx.doi.org/10.5802/jtnb.283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Adédji, Kouèssi Norbert, Japhet Odjoumani, and Alain Togbé. "Padovan and Perrin numbers as products of two generalized Lucas numbers." Archivum Mathematicum, no. 4 (2023): 315–37. http://dx.doi.org/10.5817/am2023-4-315.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

DeGeorges, Kathie M. "Numbers, I Need Numbers!" AWHONN Lifelines 3, no. 2 (April 1999): 49–50. http://dx.doi.org/10.1111/j.1552-6356.1999.tb01082.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Lee, Mercia. "Numbers, numbers all around." Practical Pre-School 2007, no. 75 (April 2007): 5–6. http://dx.doi.org/10.12968/prps.2007.1.75.38593.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Locher, Helmut. "On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree." Acta Arithmetica 89, no. 2 (1999): 97–122. http://dx.doi.org/10.4064/aa-89-2-97-122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Pokorna, Pavla, and Dick Tibboel. "Numbers, Numbers: Great, Great…But?!*." Pediatric Critical Care Medicine 21, no. 9 (September 2020): 844–45. http://dx.doi.org/10.1097/pcc.0000000000002371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hernon, Peter. "Numbers and “Damn” GPO Numbers." Government Information Quarterly 16, no. 1 (January 1999): 1–4. http://dx.doi.org/10.1016/s0740-624x(99)80012-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kulyabov, D. S., A. V. Korolkova, and M. N. Gevorkyan. "Hyperbolic numbers as Einstein numbers." Journal of Physics: Conference Series 1557 (May 2020): 012027. http://dx.doi.org/10.1088/1742-6596/1557/1/012027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Çelik, Songül, İnan Durukan, and Engin Özkan. "New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers." Chaos, Solitons & Fractals 150 (September 2021): 111173. http://dx.doi.org/10.1016/j.chaos.2021.111173.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Deliang Shi. "A new binary number system for real numbers." Naturalis Scientias 01, no. 04 (2024): 286–302. https://doi.org/10.62252/nss.2024.1020.

Texte intégral
Résumé :
A number system uses a set of digits and sign to represent all the numbers. Different number systems use different amount of digits and sign. To compare the leanness of a number system, the cardinality of the complete set of digits and sign are employed in this work. The 01 binary number system is used by almost all the modern computers. It can represent all the real numbers by two digits 0, 1 and a sign (-), which means its cardinality is 3. Thus, the 01 binary system is not a true binary system. After reviewing all the existing number systems it is found that no true binary system exists for real numbers. All the current binary number systems either don’t have radix 2, or have cardinality 3. In this paper, a true binary system for real numbers, with both radix and cardinality 2, is invented based on the principle of Yin-Yang. Surprisingly, this binary system can not only represent all real numbers without using a sign, but also perform arithmetic and Boolean operations without any problem. Furthermore, due to its radix being 2, this true binary system is compatible with the 01 binary system and many operations are interchangeable between the two systems. It is expected that this true binary system will be applied in the fields of number representation, computer science and cryptography.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Trespalacios, Jesús, and Barbara Chamberline. "Pearl diver: Identifying numbers on a number line." Teaching Children Mathematics 18, no. 7 (March 2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Geroldinger, A. "Factorization of natural numbers in algebraic number fields." Acta Arithmetica 57, no. 4 (1991): 365–73. http://dx.doi.org/10.4064/aa-57-4-365-373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Liu, Hong-Quan. "The number of squarefull numbers in an interval." Acta Arithmetica 64, no. 2 (1993): 129–49. http://dx.doi.org/10.4064/aa-64-2-129-149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Chen, Kwang-Wu. "Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion." Mathematics 10, no. 12 (June 12, 2022): 2033. http://dx.doi.org/10.3390/math10122033.

Texte intégral
Résumé :
Ramanujan-type harmonic number expansion was given by many authors. Some of the most well-known are: Hn∼γ+logn−∑k=1∞Bkk·nk, where Bk is the Bernoulli numbers. In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as n approaches infinity: Hn∼γ+c0(h)log(q+h)−∑k=1∞ck(h)k·(q+h)k, where q=n(n+1) is the nth pronic number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x)=∑j=0kkjcjxk−j, with ck is the negative of the median Bernoulli numbers. Then, 2cn=∑k=0nnkBn+k, where Bn is the Bernoulli number. By using the result obtained, we present two general Ramanujan’s asymptotic expansions for the nth harmonic number. For example, Hn∼γ+12log(q+13)−1180(q+13)2∑j=0∞bj(r)(q+13)j1/r as n approaches infinity, where bj(r) can be determined.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Backelin, Jörgen. "On the number of semigroups of natural numbers." MATHEMATICA SCANDINAVICA 66 (June 1, 1990): 197. http://dx.doi.org/10.7146/math.scand.a-12304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie