Littérature scientifique sur le sujet « Olfaction canine »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Olfaction canine ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Olfaction canine"

1

Galibert, F., N. Azzouzi, P. Quignon et G. Chaudieu. « The genetics of canine olfaction ». Journal of Veterinary Behavior 10, no 5 (septembre 2015) : 441. http://dx.doi.org/10.1016/j.jveb.2015.07.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Galibert, Francis, Naoual Azzouzi, Pascale Quignon et Gilles Chaudieu. « The genetics of canine olfaction ». Journal of Veterinary Behavior 16 (novembre 2016) : 86–93. http://dx.doi.org/10.1016/j.jveb.2016.06.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Guest, Claire, Rob Harris, Karen S. Sfanos, Eva Shrestha, Alan W. Partin, Bruce Trock, Leslie Mangold et al. « Feasibility of integrating canine olfaction with chemical and microbial profiling of urine to detect lethal prostate cancer ». PLOS ONE 16, no 2 (17 février 2021) : e0245530. http://dx.doi.org/10.1371/journal.pone.0245530.

Texte intégral
Résumé :
Prostate cancer is the second leading cause of cancer death in men in the developed world. A more sensitive and specific detection strategy for lethal prostate cancer beyond serum prostate specific antigen (PSA) population screening is urgently needed. Diagnosis by canine olfaction, using dogs trained to detect cancer by smell, has been shown to be both specific and sensitive. While dogs themselves are impractical as scalable diagnostic sensors, machine olfaction for cancer detection is testable. However, studies bridging the divide between clinical diagnostic techniques, artificial intelligence, and molecular analysis remains difficult due to the significant divide between these disciplines. We tested the clinical feasibility of a cross-disciplinary, integrative approach to early prostate cancer biosensing in urine using trained canine olfaction, volatile organic compound (VOC) analysis by gas chromatography-mass spectroscopy (GC-MS) artificial neural network (ANN)-assisted examination, and microbial profiling in a double-blinded pilot study. Two dogs were trained to detect Gleason 9 prostate cancer in urine collected from biopsy-confirmed patients. Biopsy-negative controls were used to assess canine specificity as prostate cancer biodetectors. Urine samples were simultaneously analyzed for their VOC content in headspace via GC-MS and urinary microbiota content via 16S rDNA Illumina sequencing. In addition, the dogs’ diagnoses were used to train an ANN to detect significant peaks in the GC-MS data. The canine olfaction system was 71% sensitive and between 70–76% specific at detecting Gleason 9 prostate cancer. We have also confirmed VOC differences by GC-MS and microbiota differences by 16S rDNA sequencing between cancer positive and biopsy-negative controls. Furthermore, the trained ANN identified regions of interest in the GC-MS data, informed by the canine diagnoses. Methodology and feasibility are established to inform larger-scale studies using canine olfaction, urinary VOCs, and urinary microbiota profiling to develop machine olfaction diagnostic tools. Scalable multi-disciplinary tools may then be compared to PSA screening for earlier, non-invasive, more specific and sensitive detection of clinically aggressive prostate cancers in urine samples.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Overall, Karen L. « Canine olfaction : from detection to biomarkers ». Journal of Veterinary Behavior 52-53 (juin 2022) : A3—A4. http://dx.doi.org/10.1016/j.jveb.2022.06.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arner, L. D., G. R. Johnson et H. S. Skovronek. « Delineating toxic areas by canine olfaction ». Journal of Hazardous Materials 13, no 3 (août 1986) : 375–81. http://dx.doi.org/10.1016/0304-3894(86)85009-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Quignon, Pascale, Maud Rimbault, Stéphanie Robin et Francis Galibert. « Genetics of canine olfaction and receptor diversity ». Mammalian Genome 23, no 1-2 (13 novembre 2011) : 132–43. http://dx.doi.org/10.1007/s00335-011-9371-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Brisbin, I. Lehr, et Steven N. Austad. « Testing the individual odour theory of canine olfaction ». Animal Behaviour 42, no 1 (juillet 1991) : 63–69. http://dx.doi.org/10.1016/s0003-3472(05)80606-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kokocińska-Kusiak, Agata, Martyna Woszczyło, Mikołaj Zybala, Julia Maciocha, Katarzyna Barłowska et Michał Dzięcioł. « Canine Olfaction : Physiology, Behavior, and Possibilities for Practical Applications ». Animals 11, no 8 (21 août 2021) : 2463. http://dx.doi.org/10.3390/ani11082463.

Texte intégral
Résumé :
Olfaction in dogs is crucial for gathering important information about the environment, recognizing individuals, making decisions, and learning. It is far more specialized and sensitive than humans’ sense of smell. Using the strength of dogs’ sense of smell, humans work with dogs for the recognition of different odors, with a precision far exceeding the analytical capabilities of most modern instruments. Due to their extremely sensitive sense of smell, dogs could be used as modern, super-sensitive mobile area scanners, detecting specific chemical signals in real time in various environments outside the laboratory, and then tracking the odor of dynamic targets to their source, also in crowded places. Recent studies show that dogs can detect not only specific scents of drugs or explosives, but also changes in emotions as well as in human cell metabolism during various illnesses, including COVID-19 infection. Here, we provide an overview of canine olfaction, discussing aspects connected with anatomy, physiology, behavioral aspects of sniffing, and factors influencing the olfactory abilities of the domestic dog (Canis familiaris).
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sun, Pengjiao, Yunbo Shi et Yeping Shi. « Bionic sensing system and characterization of exhaled nitric oxide detection based on canine olfaction ». PLOS ONE 17, no 12 (19 décembre 2022) : e0279003. http://dx.doi.org/10.1371/journal.pone.0279003.

Texte intégral
Résumé :
A quantitative monitoring system for fractional exhaled nitric oxide (FENO) in homes is very important for the control of respiratory diseases such as asthma. To this end, this paper proposes a small bionic sensing system for NO detection in an electronic nose based on analysis of the structure of the canine olfactory system and the airflow pattern in the nasal cavity. The proposed system detected NO at different FENO concentration levels with different bionic sensing systems in the electronic nose, and analyzed the data comparatively. Combined with a backpropagation neural network algorithm, the bionic canine sensing system improved the recognition rate for FENO detection by up to 98.1%. Moreover, electronic noses with a canine bionic sensing system can improve the performance of trace gas detection.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Craven, Brent A., Eric G. Paterson et Gary S. Settles. « The fluid dynamics of canine olfaction : unique nasal airflow patterns as an explanation of macrosmia ». Journal of The Royal Society Interface 7, no 47 (9 décembre 2009) : 933–43. http://dx.doi.org/10.1098/rsif.2009.0490.

Texte intégral
Résumé :
The canine nasal cavity contains hundreds of millions of sensory neurons, located in the olfactory epithelium that lines convoluted nasal turbinates recessed in the rear of the nose. Traditional explanations for canine olfactory acuity, which include large sensory organ size and receptor gene repertoire, overlook the fluid dynamics of odorant transport during sniffing. But odorant transport to the sensory part of the nose is the first critical step in olfaction. Here we report new experimental data on canine sniffing and demonstrate allometric scaling of sniff frequency, inspiratory airflow rate and tidal volume with body mass. Next, a computational fluid dynamics simulation of airflow in an anatomically accurate three-dimensional model of the canine nasal cavity, reconstructed from high-resolution magnetic resonance imaging scans, reveals that, during sniffing, spatially separate odour samples are acquired by each nostril that may be used for bilateral stimulus intensity comparison and odour source localization. Inside the nose, the computation shows that a unique nasal airflow pattern develops during sniffing, which is optimized for odorant transport to the olfactory part of the nose. These results contrast sharply with nasal airflow in the human. We propose that mammalian olfactory function and acuity may largely depend on odorant transport by nasal airflow patterns resulting from either the presence of a highly developed olfactory recess (in macrosmats such as the canine) or the lack of one (in microsmats including humans).
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Olfaction canine"

1

O'Shea, John G. « Field threshold measures for canine olfaction ». Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-08042009-040622/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mendel, Julian L. « Laurel Wilt Disease : Early Detection through Canine Olfaction and "Omics" Insights into Disease Progression ». FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3475.

Texte intégral
Résumé :
Laurel wilt disease is a vascular wilt affecting the xylem and water conductivity in trees belonging to the family Lauraceae. The disease was introduced by an invasive species of ambrosia beetle, Xyleborus glabratus. The beetle, together with its newly described fungal symbiont Raffaelea lauricola (pathogenic to host trees), has lead to the devastation and destruction of over 300 million wild redbay trees in southeastern forests. Ambrosia beetles make up a very unique clade of beetle and share a co-evolved obligatory mutualistic relationship with their partner fungi. Rather than consuming host tree material, the beetles excavate galleries or canals within them. These galleries serve two purposes: reproduction and fungal gardening. The beetles house fungal spores within specialized sacs, mycangia, and essentially inoculate host trees with the pathogenic agent. They actively grow and cultivate gardens of the fungus in galleries to serve as their sole food source. Once the fungus reaches the xylem vessels of the host tree, it thrives and leads to the blockage of water flow, both because of fungal accumulation and to the host response of secreting gels, gums and tyloses to occlude vessels in an attempt to quarantine the fungus. This disease spreads rapidly, and as a result, once symptoms become visible to the naked eye, it is already too late to save the tree, and it has likely already spread to adjacent ones. The present study presents the first documented study involving the early detection of disease from deep within a tree through the use of scent-discriminating canines. In addition, the present study has lead to the development of a novel sample collection device enabling the non-destructive sampling of beetle galleries. Finally, a metabolomics approach revealed key biochemical pathway modifications in the disease state, as well as potential clues to disease development.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eason, Fenella. « Doing diabetes (Type 1) : symbiotic ethics and practices of care embodied in human-canine collaborations and olfactory sensitivity ». Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/30280.

Texte intégral
Résumé :
The chronically ill participants in this study are vulnerable experts in life’s uncertainties, and have become aware over time of multiple medical and social needs and practices. But, unlike the hypo-aware respondents documented in some studies of diabetes mellitus Type 1, these research participants are also conscious of their inability to recognise when their own fluctuating blood glucose levels are rising or falling to extremes, a loss of hyper- or hypo-awareness that puts their lives constantly at risk. Particular sources of better life management, increased self-esteem and means of social (re-)integration are trained medical alert assistance dogs who share the human home, and through keen olfactory sensitivity, are able to give advance warning when their partners’ blood sugar levels enter ‘danger’ zones. Research studies in anthrozoology and anthropology provide extensive literature on historic and contemporary human bonds with domestic and/or wild nonhuman animals. Equally, the sociology of health and illness continues to extend research into care practices performed to assist people with chronic illness. This study draws from these disciplines in order to add to multispecies ethnographic literature by exploring human-canine engagement, contribution and narrative, detailing the impact each member of the dyad has on the other, and by observing the 'doing' of the partnerships' daily routines to ward off hypo-glycaemia and hospitalisation. In addition, the project investigates the place, role and 'otherness' of a medical alert dog in a chronically ill person's understanding of 'the-body-they-do'. The perspective of symbolic interactionism assists in disentangling individual and shared meanings inherent in the interspecies collaboration by examining the mutualistic practices of care performed. The often-flexible moral boundaries that humans construct to differentiate between acceptable use and unacceptable exploitation of nonhuman animals are questioned within ethics-of-care theory, based on the concept of dogs as animate instruments and biomedical resources.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maïdodou, Laetitia. « Identification de biomarqueurs de pathologies par GC-MS et développement de protocoles de capture d'odeurs pour la détection olfactive canine ». Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF071.

Texte intégral
Résumé :
Les Composés Organiques Volatils (COVs) issus du corps humain, sont étudiés pour le développement de méthodes diagnostiques innovantes utilisant l’olfaction canine. Le manque de standardisation des protocoles de prélèvement des COVs est cependant l’un des facteurs limitants, pour parvenir à des applications cliniques. Ce manuscrit comporte une revue des méthodologies les plus pertinentes dans ce contexte. Une étude expérimentale est ensuite menée par Chromatographie Gazeuse couplée à la Spectrométrie de Masse (GC-MS). Les limites analytiques de 5 dispositifs (compresse médicale, tube Getxent® (Biodesiv), tube Sorbstar® (Action Europe), Twister (Gerstel), et patch en Polydiméthylsiloxane (PDMS)) sont comparés. En outre, des supports nanostructurés innovants pour le piégeage sélectif des thiols volatils sont développés. Enfin, des échantillons de sueur issus de 160 individus, positifs à la COVID-19 (symptomatiques ou asymptomatiques) ou négatifs, sont analysés par GC-MS. Trois biomarqueurs sont identifiés par des analyses statistiques. La méthode développée est automatisée, reproductible, et applicable à l’étude de diverses pathologies
The study of Volatile Organic Compounds (VOCs) from the human body is of great interest for disease diagnosis using canine olfaction. However, the lack of standardized VOCs sampling protocols is a limiting factor for clinical applications. This manuscript includes a review of the most relevant methodologies in this context. An experimental study is carried out using Gas Chromatography coupled with Mass Spectrometry (GC-MS). The analytical limits of five devices (medical gauze, Getxent® tube (Biodesiv), Sorbstar® tube (Action Europe), Twister (Gerstel), and Polydimethylsiloxane (PDMS) patch) are compared. In addition, innovative nanostructured devices for the selective trapping of volatile thiols are developed. Finally, sweat samples from 160 individuals, either COVID-19 positive (symptomatic or asymptomatic) or negative, are analyzed by GC-MS. Three biomarkers are identified through statistical analysis. The method developed herein is automated, reproducible, and applicable to the study of various pathologies
Styles APA, Harvard, Vancouver, ISO, etc.
5

Quignon, Pascale. « Le modèle génétique canin : analyse du répertoire des récepteurs olfactifs et cartographie de gènes d'intérêt ». Rennes 1, 2003. http://www.theses.fr/2003REN1S035.

Texte intégral
Résumé :
Mes travaux de thèse se sont organisés autour de deux axes. Le premier axe, majeur, a consisté en l'identification et la caractérisation des gènes canins de récepteurs olfactifs (OR). Deux stratégies m'ont permis d'en identifier plus de 800, et de caractériser plus finement 600 de ces gènes. Le taux de pseudogènes a été évalué à 18 %, indiquant que le chien aurait deux fois plus de gènes actifs que l'homme. Les gènes OR canins sont organisés en groupes sur 24 des 40 chromosomes canins et cette organisation génomique est très semblable à celles des répertoires humains et murins. Le deuxième aspect a consisté en la cartographie de gènes d'intérêt sur la carte d'hybrides irradiés du génome du chien développée à l'UMR6061, soit dans le but d'enrichir la carte du génome canin en cours, soit à titre collaboratif, pour localiser des gènes impliqués dans des pathologies, et plus particulièrement dans la surdité et certaines maladies neurologiques et/ou musculaires.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Craven, Brent A. Settles G. S. Paterson Eric G. « A fundamental study of the anatomy, aerodynamics, and transport phenomena of canine olfaction ». 2008. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-3088/index.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Olfaction canine"

1

Arner, L. D. Delineating toxic areas by canine olfaction. Cincinnati, OH : U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jezierski, Tadeusz, John Ensminger et L. E. Papet, dir. Canine Olfaction Science and Law. CRC Press, 2016. http://dx.doi.org/10.1201/b20027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Canine Olfaction Science and Law. Taylor & Francis Group, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jezierski, Tadeusz, John Ensminger et L. E. Papet. Canine Olfaction Science and Law : Advances in Forensic Science, Medicine, Conservation, and Environmental Remediation. Taylor & Francis Group, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jezierski, Tadeusz, John Ensminger et L. E. Papet. Canine Olfaction Science and Law : Advances in Forensic Science, Medicine, Conservation, and Environmental Remediation. Taylor & Francis Group, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jezierski, Tadeusz, John Ensminger et Lehman Papet. Canine Olfaction Science and Law : Advances in Forensic Science, Medicine, Conservation, and Environmental Remediation. Taylor & Francis Group, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Olfaction canine"

1

Kanazawa, Hiroaki, Sumio Yoshie et Tsuneo Fujita. « Ultrastructure of Canine Circumvallate Taste Buds ». Dans Olfaction and Taste XI, 25. Tokyo : Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gadbois, Simon, et Catherine Reeve. « Canine Olfaction : Scent, Sign, and Situation ». Dans Domestic Dog Cognition and Behavior, 3–29. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53994-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Settles, Gary S., Douglas A. Kester et Lori J. Dodson-Dreibelbis. « The External Aerodynamics of Canine Olfaction ». Dans Sensors and Sensing in Biology and Engineering, 323–35. Vienna : Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6025-1_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ugawa, Tohru, et Kenzo Kurihara. « Enhancing Effects of Salts on Canine Taste Responses to Amino Acids and Umami Substances ». Dans Olfaction and Taste XI, 361–64. Tokyo : Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68355-1_149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Saha, Debajit. « Insect Olfaction in Chemical Sensing ». Dans Canines, 151–77. New York : Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003261131-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Giese, Roger, et Klaus Hackner. « Canine olfaction ». Dans Breathborne Biomarkers and the Human Volatilome, 551–81. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-819967-1.00034-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Goldblatt, Allen, Irit Gazit et Joseph Terkel. « Olfaction and Explosives Detector Dogs ». Dans Canine Ergonomics, 135–74. CRC Press, 2009. http://dx.doi.org/10.1201/9781420079920.ch8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Quignon, Pascale, et Francis Galibert. « Genetics of Canine Olfaction ». Dans Canine Olfaction Science and Law, 39–48. CRC Press, 2016. http://dx.doi.org/10.1201/b20027-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Siniscalchi, Marcello. « Olfaction and the Canine Brain ». Dans Canine Olfaction Science and Law, 31–37. CRC Press, 2016. http://dx.doi.org/10.1201/b20027-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shoebotham, Leslie. « Canine Drug-Detection Evidence : Admissibility, Canine Qualifications, and Investigative Practices ». Dans Canine Olfaction Science and Law, 217–43. CRC Press, 2016. http://dx.doi.org/10.1201/b20027-20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie