Littérature scientifique sur le sujet « Omic data »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Omic data ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Omic data"
Oromendia, Ana, Dorina Ismailgeci, Michele Ciofii, Taylor Donnelly, Linda Bojmar, John Jyazbek, Arnaub Chatterjee, David Lyden, Kenneth H. Yu et David Paul Kelsen. « Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study. » Journal of Clinical Oncology 38, no 15_suppl (20 mai 2020) : e16743-e16743. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16743.
Texte intégralUgidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer et Ana Conesa. « MultiBaC : A strategy to remove batch effects between different omic data types ». Statistical Methods in Medical Research 29, no 10 (4 mars 2020) : 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Texte intégralRappoport, Nimrod, et Ron Shamir. « NEMO : cancer subtyping by integration of partial multi-omic data ». Bioinformatics 35, no 18 (30 janvier 2019) : 3348–56. http://dx.doi.org/10.1093/bioinformatics/btz058.
Texte intégralCanela, Núria Anela. « A pioneering multi-omics data platform sheds light on the understanding of biological systems ». Project Repository Journal 20, no 1 (4 juillet 2024) : 20–23. http://dx.doi.org/10.54050/prj2021863.
Texte intégralLancaster, Samuel M., Akshay Sanghi, Si Wu et Michael P. Snyder. « A Customizable Analysis Flow in Integrative Multi-Omics ». Biomolecules 10, no 12 (27 novembre 2020) : 1606. http://dx.doi.org/10.3390/biom10121606.
Texte intégralMorota, Gota. « 30 Mutli-omic data integration in quantitative genetics ». Journal of Animal Science 97, Supplement_2 (juillet 2019) : 15. http://dx.doi.org/10.1093/jas/skz122.027.
Texte intégralEscriba-Montagut, Xavier, Yannick Marcon, Augusto Anguita-Ruiz, Demetris Avraam, Jose Urquiza, Andrei S. Morgan, Rebecca C. Wilson, Paul Burton et Juan R. Gonzalez. « Federated privacy-protected meta- and mega-omics data analysis in multi-center studies with a fully open-source analytic platform ». PLOS Computational Biology 20, no 12 (9 décembre 2024) : e1012626. https://doi.org/10.1371/journal.pcbi.1012626.
Texte intégralMeunier, Lea, Guillaume Appe, Abdelkader Behdenna, Valentin Bernu, Helia Brull Corretger, Prashant Dhillon, Eleonore Fox et al. « Abstract 6209 : From data disparity to data harmony : A comprehensive pan-cancer omics data collection ». Cancer Research 84, no 6_Supplement (22 mars 2024) : 6209. http://dx.doi.org/10.1158/1538-7445.am2024-6209.
Texte intégralQuackenbush, John. « Data standards for 'omic' science ». Nature Biotechnology 22, no 5 (mai 2004) : 613–14. http://dx.doi.org/10.1038/nbt0504-613.
Texte intégralBoekel, Jorrit, John M. Chilton, Ira R. Cooke, Peter L. Horvatovich, Pratik D. Jagtap, Lukas Käll, Janne Lehtiö, Pieter Lukasse, Perry D. Moerland et Timothy J. Griffin. « Multi-omic data analysis using Galaxy ». Nature Biotechnology 33, no 2 (février 2015) : 137–39. http://dx.doi.org/10.1038/nbt.3134.
Texte intégralThèses sur le sujet "Omic data"
Guan, Xiaowei. « Bioinformatics Approaches to Heterogeneous Omic Data Integration ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1340302883.
Texte intégralXiao, Hui. « Network-based approaches for multi-omic data integration ». Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289716.
Texte intégralZuo, Yiming. « Differential Network Analysis based on Omic Data for Cancer Biomarker Discovery ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78217.
Texte intégralPh. D.
Tsai, Tsung-Heng. « Bayesian Alignment Model for Analysis of LC-MS-based Omic Data ». Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64151.
Texte intégralPh. D.
Ruffalo, Matthew M. « Algorithms for Constructing Features for Integrated Analysis of Disparate Omic Data ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449238712.
Texte intégralElhezzani, Najla Saad R. « New statistical methodologies for improved analysis of genomic and omic data ». Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/new-statistical-methodologies-for-improved-analysis-of-genomic-and-omic-data(eb8d95f4-e926-4c54-984f-94d86306525a).html.
Texte intégralElsheikh, Samar Salah Mohamedahmed. « Integration of multi-omic data and neuroimaging characteristics in studying brain related diseases ». Doctoral thesis, Faculty of Health Sciences, 2020. http://hdl.handle.net/11427/32609.
Texte intégralEhrenberger, Tobias. « Cancer systems biology : functional insights and therapeutic strategies for medulloblastoma from omic data integration ». Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123062.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 151-167).
Medulloblastoma (MB) is a chiefly pediatric cancer of the cerebellum that has been studied extensively using genomic, epigenomic, and transcriptomic data. It comprises at least four molecularly distinct subgroups: WNT, SHH, Group 3, and Group 4. Despite the detailed characterization of MB, many disease-driving events remain to be elucidated and therapeutic targets to be nominated. In this thesis, we describe three studies that contribute to a better understanding of this devastating disease: First, we describe a study that aims to fully describe the genomic landscape in the largest medulloblastoma cohort to date, using 491 sequenced MB tumors and 1,256 epigenetically analyzed cases. This work describes subgroup-specific driver alterations including previously unappreciated actionable targets; and, based on epigenetic data, identifies further heterogeneity within Group 3 and Group 4 tumors. Second, we focus on the proteomes and phospho-proteomes of 45 medulloblastoma samples.
We identified distinct pathways associated with two subsets of SHH tumors that showed robustly distinct proteomes, but similar transcriptomes, and found post-translational modifications of MYC that are associated with poor outcomes in Group 3 tumors. We also found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. This study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies. Third, we characterize the metabolomic space of MB on largely the same 45 tumors as used in the proteome-focused study. Here, we present preliminary insights from derived from integrative network and other analyses. We find that MB consensus subgroups are preserved in metabolic space, and that certain classes of metabolites are elevated in MYC-activated MB.
We also show that, similar to other cancers, a previously described gain-of-function mutation in IDH1 may cause elevated 2-hydroxyglutarate levels in MB. The work described in this thesis significantly enhances previous knowledge of medulloblastoma and its subgroups, and provides insights that may aid in the development of medulloblastoma therapies in the near future.
by Tobias Ehrenberger.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering
Curti, Nico. « Implementazione e benchmarking dell'algoritmo QDANet PRO per l'analisi di big data genomici ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12018/.
Texte intégralArsenteva, Polina. « Statistical modeling and analysis of radio-induced adverse effects based on in vitro and in vivo data ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK074.
Texte intégralIn this work we address the problem of adverse effects induced by radiotherapy on healthy tissues. The goal is to propose a mathematical framework to compare the effects of different irradiation modalities, to be able to ultimately choose those treatments that produce the minimal amounts of adverse effects for potential use in the clinical setting. The adverse effects are studied in the context of two types of data: in terms of the in vitro omic response of human endothelial cells, and in terms of the adverse effects observed on mice in the framework of in vivo experiments. In the in vitro setting, we encounter the problem of extracting key information from complex temporal data that cannot be treated with the methods available in literature. We model the radio-induced fold change, the object that encodes the difference in the effect of two experimental conditions, in the way that allows to take into account the uncertainties of measurements as well as the correlations between the observed entities. We construct a distance, with a further generalization to a dissimilarity measure, allowing to compare the fold changes in terms of all the important statistical properties. Finally, we propose a computationally efficient algorithm performing clustering jointly with temporal alignment of the fold changes. The key features extracted through the latter are visualized using two types of network representations, for the purpose of facilitating biological interpretation. In the in vivo setting, the statistical challenge is to establish a predictive link between variables that, due to the specificities of the experimental design, can never be observed on the same animals. In the context of not having access to joint distributions, we leverage the additional information on the observed groups to infer the linear regression model. We propose two estimators of the regression parameters, one based on the method of moments and the other based on optimal transport, as well as the estimators for the confidence intervals based on the stratified bootstrap procedure
Livres sur le sujet "Omic data"
Azuaje, Francisco. Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralAzuaje, Francisco. Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralAzuaje, Francisco. Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralMayer, Bernd, dir. Bioinformatics for Omics Data. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-027-0.
Texte intégralNing, Kang, dir. Methodologies of Multi-Omics Data Integration and Data Mining. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8210-1.
Texte intégralAlkhateeb, Abedalrhman, et Luis Rueda, dir. Machine Learning Methods for Multi-Omics Data Integration. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-36502-7.
Texte intégralTieri, Paolo, Christine Nardini et Jennifer Elizabeth Dent, dir. Multi-omic Data Integration. Frontiers Media SA, 2015. http://dx.doi.org/10.3389/978-2-88919-648-7.
Texte intégralRomualdi, Chiara, Enrica Calura, Davide Risso, Sampsa Hautaniemi et Francesca Finotello, dir. Multi-omic Data Integration in Oncology. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88966-151-0.
Texte intégralData Analysis for Omic Sciences : Methods and Applications. Elsevier, 2018. http://dx.doi.org/10.1016/s0166-526x(18)x0004-x.
Texte intégralJaumot, Joaquim, Carmen Bedia et Romà Tauler. Data Analysis for Omic Sciences : Methods and Applications. Elsevier, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Omic data"
Saitou, Naruya. « Omic Data Collection ». Dans Introduction to Evolutionary Genomics, 281–88. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5304-7_12.
Texte intégralMason, Christopher E., Sandra G. Porter et Todd M. Smith. « Characterizing Multi-omic Data in Systems Biology ». Dans Systems Analysis of Human Multigene Disorders, 15–38. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8778-4_2.
Texte intégralXu, Ying, Juan Cui et David Puett. « Omic Data, Information Derivable and Computational Needs ». Dans Cancer Bioinformatics, 41–63. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1381-7_2.
Texte intégralZou, Yan. « Analyzing Multi-Omic Data with Integrative Platforms ». Dans Integrative Bioinformatics, 377–86. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6795-4_18.
Texte intégralWarrenfeltz, Susanne, et Jessica C. Kissinger. « Accessing Cryptosporidium Omic and Isolate Data via CryptoDB.org ». Dans Methods in Molecular Biology, 139–92. New York, NY : Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9748-0_10.
Texte intégralReverter, Ferran, Esteban Vegas et Josep M. Oller. « Kernel Conditional Embeddings for Associating Omic Data Types ». Dans Bioinformatics and Biomedical Engineering, 501–10. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78723-7_43.
Texte intégralKalapanulak, Saowalak, Treenut Saithong et Chinae Thammarongtham. « Networking Omic Data to Envisage Systems Biological Regulation ». Dans Advances in Biochemical Engineering/Biotechnology, 121–41. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/10_2016_38.
Texte intégralXu, Ying, Juan Cui et David Puett. « Elucidation of Cancer Drivers Through Comparative Omic Data Analyses ». Dans Cancer Bioinformatics, 113–47. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1381-7_5.
Texte intégralWarrenfeltz, Susanne, et Jessica C. Kissinger. « Correction to : Accessing Cryptosporidium Omic and Isolate Data via CryptoDB.org ». Dans Methods in Molecular Biology, C1. New York, NY : Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-9748-0_22.
Texte intégralBhattacharya, Surajit, et Heather Gordish-Dressman. « Guidelines for Bioinformatics and the Statistical Analysis of Omic Data ». Dans Omics Approaches to Understanding Muscle Biology, 45–75. New York, NY : Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9802-9_4.
Texte intégralActes de conférences sur le sujet "Omic data"
Dey, Anirban, Kaushik Das Sharma, Pritha Bhattacharjee et Amitava Chatterjee. « A Voting based Assimilation Method for the Winning Neurons in Multi-Level SOM to Cluster the Convoluted Biomarkers of a Time Varying ‘Omic Data ». Dans 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725375.
Texte intégralChong, Darren, Sonit Singh et Arcot Sowmya. « Spectrogram-Based Imagification Applying Deep Learning on Omics Data ». Dans 2024 International Conference on Digital Image Computing : Techniques and Applications (DICTA), 477–84. IEEE, 2024. https://doi.org/10.1109/dicta63115.2024.00076.
Texte intégralWolfgang, Seth, Skyler Ruiter, Marc Tunnell, Timothy Triche, Erin Carrier et Zachary DeBruine. « Value-Compressed Sparse Column (VCSC) : Sparse Matrix Storage for Single-cell Omics Data ». Dans 2024 IEEE International Conference on Big Data (BigData), 4952–58. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825091.
Texte intégralYao, Zhi-Cheng, Zi Liu, Wei-Zhong Lin et Xuan Xiao. « Clustering of Drug Side Effects Based on Multi-Omics Data ». Dans 2024 2nd International Conference on Computer, Vision and Intelligent Technology (ICCVIT), 1–7. IEEE, 2024. https://doi.org/10.1109/iccvit63928.2024.10872593.
Texte intégralLi, Qi, Jian-Wei Su et Wen-Hui Wu. « Clustering Single-Cell Multi-Omics Data with Graph Contrastive Learning ». Dans 2024 International Conference on Machine Learning and Cybernetics (ICMLC), 239–44. IEEE, 2024. https://doi.org/10.1109/icmlc63072.2024.10935198.
Texte intégralShi, Tianyi, Xiucai Ye, Dong Huang et Tetsuya Sakurai. « Selecting interpretable features for cancer subtyping on multi-omics data ». Dans 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1155–60. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821783.
Texte intégralMishra, Soumya Ranjan, Sachikanta Dash, Sasmita Padhy, Naween Kumar et Yajnaseni Dash. « Integrating Multi-Omics Data for Advanced Diabetes Prediction and Understanding ». Dans 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 1447–53. IEEE, 2024. https://doi.org/10.1109/ic3i61595.2024.10828970.
Texte intégralCiortan, Madalina, et Matthieu Defrance. « Optimization algorithm for omic data subspace clustering ». Dans CSBio2021 : The 12th International Conference on Computational Systems-Biology and Bioinformatics. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3486713.3486742.
Texte intégralZuo, Yiming, Guoqiang Yu, Chi Zhang et Habtom W. Ressom. « A new approach for multi-omic data integration ». Dans 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2014. http://dx.doi.org/10.1109/bibm.2014.6999157.
Texte intégralGlass, Kimberly. « Using Multi-Omic Data to Model Gene Regulatory Networks ». Dans Genetoberfest 2023. ScienceOpen, 2023. http://dx.doi.org/10.14293/gof.23.03.
Texte intégralRapports d'organisations sur le sujet "Omic data"
Mitchell, Hugh, et Jennifer Kyle. Full Integration of Lipidomics Data into Multi-OMIC Functional Enrichment. Office of Scientific and Technical Information (OSTI), novembre 2019. http://dx.doi.org/10.2172/1986189.
Texte intégralHuang, Lei, Meng Song, Hui Shen, Huixiao Hong, Ping Gong, Deng Hong-Wen et Zhang Chaoyang. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), février 2024. http://dx.doi.org/10.21079/11681/48221.
Texte intégralIudicone, Daniele, et Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Texte intégralSanderson, William. 'Omics and Big Data in Harmful Algal Bloom Research. Office of Scientific and Technical Information (OSTI), août 2024. http://dx.doi.org/10.2172/2438485.
Texte intégralHafen, Ryan, Lisa Bramer, Lee Ann McCue, Rachel Richardson et Chris Ebsch. MODE : The Multi-Omics Data Exploration Platform Phase I Final Technical Report. Office of Scientific and Technical Information (OSTI), décembre 2019. http://dx.doi.org/10.2172/1630300.
Texte intégralWheeler, Travis. Machine learning approaches for integrating multi-omics data to expand microbiome annotation. Office of Scientific and Technical Information (OSTI), avril 2024. http://dx.doi.org/10.2172/2331432.
Texte intégralEngel, Jasper, et Hilko van der Voet. G-TwYST harmonisation of statistical methods for use of omics data in food safety assessment. Wageningen : Biometris, Wageningen University & Research, 2018. http://dx.doi.org/10.18174/455159.
Texte intégralWrinn, Michael. Platform for efficient large-scale storage and analysis of multi-omics data in plant and microbial systems. Final Technical Report. Office of Scientific and Technical Information (OSTI), septembre 2020. http://dx.doi.org/10.2172/1659436.
Texte intégralSolis-Lemus, Claudia. Harnessing the power of big omics data : Novel statistical tools to study the role of microbial communities in ; fundamental biological processes. Office of Scientific and Technical Information (OSTI), janvier 2024. http://dx.doi.org/10.2172/2274956.
Texte intégralHolmes, Rebecca, Keeley Blackie, Ilya Ivlev et Erick H. Turner. Enhancing Systematic Review Methods by Incorporating Unpublished Drug Trials. Agency for Healthcare Research and Quality (AHRQ), janvier 2025. https://doi.org/10.23970/ahrqepcwhitepaperenhancing.
Texte intégral