Articles de revues sur le sujet « Organici Volatili »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Organici Volatili ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Hong, Juan, Mikko Äijälä, Silja A. K. Häme, et al. "Estimates of the organic aerosol volatility in a boreal forest using two independent methods." Atmospheric Chemistry and Physics 17, no. 6 (2017): 4387–99. http://dx.doi.org/10.5194/acp-17-4387-2017.
Texte intégralPatoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. "The role of organic condensation on ultrafine particle growth during nucleation events." Atmospheric Chemistry and Physics Discussions 14, no. 22 (2014): 30761–98. http://dx.doi.org/10.5194/acpd-14-30761-2014.
Texte intégralPatoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. "The role of organic condensation on ultrafine particle growth during nucleation events." Atmospheric Chemistry and Physics 15, no. 11 (2015): 6337–50. http://dx.doi.org/10.5194/acp-15-6337-2015.
Texte intégralJathar, S. H., M. A. Miracolo, A. A. Presto, N. M. Donahue, P. J. Adams, and A. L. Robinson. "Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust." Atmospheric Chemistry and Physics 12, no. 19 (2012): 9025–40. http://dx.doi.org/10.5194/acp-12-9025-2012.
Texte intégralKays, Stanley J. "NON-ETHYLENE BIOLOGICALLY ACTIVE POSTHARVEST VOLATILES." HortScience 25, no. 9 (1990): 1180f—1180. http://dx.doi.org/10.21273/hortsci.25.9.1180f.
Texte intégralEsteve-Redondo, Patricia, Raquel Heras-Mozos, Ernest Simó-Ramírez, et al. "Innovative Systems for the Delivery of Naturally Occurring Antimicrobial Volatiles in Active Food-Packaging Technologies for Fresh and Minimally Processed Produce: Stimuli-Responsive Materials." Foods 13, no. 6 (2024): 856. http://dx.doi.org/10.3390/foods13060856.
Texte intégralLee, A. K. Y., K. L. Hayden, P. Herckes, et al. "Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing." Atmospheric Chemistry and Physics 12, no. 15 (2012): 7103–16. http://dx.doi.org/10.5194/acp-12-7103-2012.
Texte intégralLee, A. K. Y., K. L. Hayden, P. Herckes, et al. "Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing." Atmospheric Chemistry and Physics Discussions 12, no. 2 (2012): 6019–47. http://dx.doi.org/10.5194/acpd-12-6019-2012.
Texte intégralLi, Zeqi, Shuxiao Wang, Shengyue Li, et al. "High-resolution emission inventory of full-volatility organic compounds from cooking in China during 2015–2021." Earth System Science Data 15, no. 11 (2023): 5017–37. http://dx.doi.org/10.5194/essd-15-5017-2023.
Texte intégralJathar, S. H., M. A. Miracolo, A. A. Presto, P. J. Adams, and A. L. Robinson. "Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust." Atmospheric Chemistry and Physics Discussions 12, no. 4 (2012): 9945–83. http://dx.doi.org/10.5194/acpd-12-9945-2012.
Texte intégralGrieshop, A. P., J. M. Logue, N. M. Donahue, and A. L. Robinson. "Laboratory investigation of photochemical oxidation of organic aerosol from wood fires – Part 1: Measurement and simulation of organic aerosol evolution." Atmospheric Chemistry and Physics Discussions 8, no. 4 (2008): 15699–737. http://dx.doi.org/10.5194/acpd-8-15699-2008.
Texte intégralApriyanto, Donni Kis, and Mitrayana Mitrayana. "SERAPAN SENYAWA ORGANIK VOLATIL SEBAGAI BIOMARKER PENYAKIT KANKER PARU: SUATU MINI REVIEW." Biomedika 12, no. 2 (2020): 58–64. http://dx.doi.org/10.23917/biomedika.v12i2.10114.
Texte intégralRaatikainen, T., P. Vaattovaara, P. Tiitta, et al. "Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer." Atmospheric Chemistry and Physics 10, no. 4 (2010): 2063–77. http://dx.doi.org/10.5194/acp-10-2063-2010.
Texte intégralPoulain, L., W. Birmili, F. Canonaco, et al. "Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany." Atmospheric Chemistry and Physics 14, no. 18 (2014): 10145–62. http://dx.doi.org/10.5194/acp-14-10145-2014.
Texte intégralGao, Chloe Y., Kostas Tsigaridis, and Susanne E. Bauer. "MATRIX-VBS (v1.0): implementing an evolving organic aerosol volatility in an aerosol microphysics model." Geoscientific Model Development 10, no. 2 (2017): 751–64. http://dx.doi.org/10.5194/gmd-10-751-2017.
Texte intégralCheung, Heidi H. Y., Haobo Tan, Hanbing Xu, et al. "Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China." Atmospheric Chemistry and Physics 16, no. 13 (2016): 8431–46. http://dx.doi.org/10.5194/acp-16-8431-2016.
Texte intégralKangasniemi, Oskari, Pauli Simonen, Jana Moldanová, et al. "Volatility of a Ship’s Emissions in the Baltic Sea Using Modelling and Measurements in Real-World Conditions." Atmosphere 14, no. 7 (2023): 1175. http://dx.doi.org/10.3390/atmos14071175.
Texte intégralPoulain, L., W. Birmili, F. Canonaco, et al. "Chemical mass balance of refractory particles (<i>T</i>=300 °C) at the tropospheric research site Melpitz, Germany." Atmospheric Chemistry and Physics Discussions 13, no. 10 (2013): 26981–7018. http://dx.doi.org/10.5194/acpd-13-26981-2013.
Texte intégralIrfan, Muhammed, Thomas Kühn, Taina Yli-Juuti, et al. "A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds." Atmospheric Chemistry and Physics 24, no. 14 (2024): 8489–506. http://dx.doi.org/10.5194/acp-24-8489-2024.
Texte intégralLu, Quanyang, Yunliang Zhao, and Allen L. Robinson. "Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions." Atmospheric Chemistry and Physics 18, no. 23 (2018): 17637–54. http://dx.doi.org/10.5194/acp-18-17637-2018.
Texte intégralGraham, Emelie L., Cheng Wu, David M. Bell, et al. "Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors." Atmospheric Chemistry and Physics 23, no. 13 (2023): 7347–62. http://dx.doi.org/10.5194/acp-23-7347-2023.
Texte intégralHäkkinen, S. A. K., M. Äijälä, K. Lehtipalo, et al. "Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland." Atmospheric Chemistry and Physics Discussions 12, no. 5 (2012): 11201–44. http://dx.doi.org/10.5194/acpd-12-11201-2012.
Texte intégralChinnasamy, G. P., S. Sundareswaran, K. S. Subramaniyan, K. Raja, P. R. Renganayaki, and S. Marimuthu. "Volatile organic compound analysis as advanced technology to detect seed quality in groundnut." Journal of Applied and Natural Science 14, no. 3 (2022): 885–94. http://dx.doi.org/10.31018/jans.v14i3.3617.
Texte intégralHuang, Wei, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Thomas Leisner, and Claudia Mohr. "Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany." Atmospheric Chemistry and Physics 19, no. 18 (2019): 11687–700. http://dx.doi.org/10.5194/acp-19-11687-2019.
Texte intégralSlowik, J. G., J. P. S. Wong, and J. P. D. Abbatt. "Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol." Atmospheric Chemistry and Physics Discussions 12, no. 3 (2012): 8183–224. http://dx.doi.org/10.5194/acpd-12-8183-2012.
Texte intégralCai, Mingfu, Chenshuo Ye, Bin Yuan, et al. "Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes." Atmospheric Chemistry and Physics 24, no. 22 (2024): 13065–79. http://dx.doi.org/10.5194/acp-24-13065-2024.
Texte intégralAdebesin, Funmilayo, Joshua R. Widhalm, Benoît Boachon, et al. "Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter." Science 356, no. 6345 (2017): 1386–88. http://dx.doi.org/10.1126/science.aan0826.
Texte intégralKarnezi, E., I. Riipinen, and S. N. Pandis. "Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis." Atmospheric Measurement Techniques Discussions 7, no. 1 (2014): 859–93. http://dx.doi.org/10.5194/amtd-7-859-2014.
Texte intégralXu, Weiqi, Conghui Xie, Eleni Karnezi, et al. "Summertime aerosol volatility measurements in Beijing, China." Atmospheric Chemistry and Physics 19, no. 15 (2019): 10205–16. http://dx.doi.org/10.5194/acp-19-10205-2019.
Texte intégralFons, Françoise, Didier Froissard, Jean-Marie Bessière, Bruno Buatois, and Sylvie Rapior. "Biodiversity of Volatile Organic Compounds from Five French Ferns." Natural Product Communications 5, no. 10 (2010): 1934578X1000501. http://dx.doi.org/10.1177/1934578x1000501028.
Texte intégralRaatikainen, T., P. Vaattovaara, P. Tiitta, et al. "Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer." Atmospheric Chemistry and Physics Discussions 9, no. 5 (2009): 21847–89. http://dx.doi.org/10.5194/acpd-9-21847-2009.
Texte intégralKokkola, H., P. Yli-Pirilä, M. Vesterinen, et al. "The role of low volatile organics on secondary organic aerosol formation." Atmospheric Chemistry and Physics 14, no. 3 (2014): 1689–700. http://dx.doi.org/10.5194/acp-14-1689-2014.
Texte intégralVKASM, Wanasinghe, Kumara ADNT, Ranaweera GKMMK, Chanchala KMG, Hemachandra KS, and Nugaliyadde L. "Resistance-Linked Volatile Profiles of Sugarcane Varieties in Sri Lanka and their Potential for Semiochemical-based Management of Chilo sacchariphagus indicus (Lepidoptera: Crambidae)." International Journal of Zoology and Animal Biology 8, no. 1 (2025): 1–12. https://doi.org/10.23880/izab-16000644.
Texte intégralKarnezi, E., I. Riipinen, and S. N. Pandis. "Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis." Atmospheric Measurement Techniques 7, no. 9 (2014): 2953–65. http://dx.doi.org/10.5194/amt-7-2953-2014.
Texte intégralSlowik, J. G., J. P. S. Wong, and J. P. D. Abbatt. "Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol." Atmospheric Chemistry and Physics 12, no. 20 (2012): 9775–90. http://dx.doi.org/10.5194/acp-12-9775-2012.
Texte intégralCiarelli, Giancarlo, Imad El Haddad, Emily Bruns, et al. "Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40)." Geoscientific Model Development 10, no. 6 (2017): 2303–20. http://dx.doi.org/10.5194/gmd-10-2303-2017.
Texte intégralPaciga, A., E. Karnezi, E. Kostenidou, et al. "Volatility of organic aerosol and its components in the Megacity of Paris." Atmospheric Chemistry and Physics Discussions 15, no. 16 (2015): 22263–89. http://dx.doi.org/10.5194/acpd-15-22263-2015.
Texte intégralPaciga, Andrea, Eleni Karnezi, Evangelia Kostenidou, et al. "Volatility of organic aerosol and its components in the megacity of Paris." Atmospheric Chemistry and Physics 16, no. 4 (2016): 2013–23. http://dx.doi.org/10.5194/acp-16-2013-2016.
Texte intégralHuang, Kerui, Hui Shang, Qiong Zhou, Yun Wang, Hui Shen, and Yuehong Yan. "Volatiles Induced from Hypolepis punctata (Dennstaedtiaceae) by Herbivores Attract Sclomina erinacea (Hemiptera: Reduviidae): Clear Evidence of Indirect Defense in Fern." Insects 12, no. 11 (2021): 978. http://dx.doi.org/10.3390/insects12110978.
Texte intégralQian, Qi, Jiarong Cui, Yuanyuan Miao, et al. "The Plant Volatile-Sensing Mechanism of Insects and Its Utilization." Plants 13, no. 2 (2024): 185. http://dx.doi.org/10.3390/plants13020185.
Texte intégralSalo, K., M. Hallquist, Å. M. Jonsson, et al. "Volatility of secondary organic aerosol during OH radical induced ageing." Atmospheric Chemistry and Physics Discussions 11, no. 7 (2011): 19507–43. http://dx.doi.org/10.5194/acpd-11-19507-2011.
Texte intégralSalo, K., M. Hallquist, Å. M. Jonsson, et al. "Volatility of secondary organic aerosol during OH radical induced ageing." Atmospheric Chemistry and Physics 11, no. 21 (2011): 11055–67. http://dx.doi.org/10.5194/acp-11-11055-2011.
Texte intégralDavis, Peter M., and Michael C. Qian. "Effect of Ethanol on the Adsorption of Volatile Sulfur Compounds on Solid Phase Micro-Extraction Fiber Coatings and the Implication for Analysis in Wine." Molecules 24, no. 18 (2019): 3392. http://dx.doi.org/10.3390/molecules24183392.
Texte intégralChinnasamy, G. P., S. Sundareswaran, K. S. Subramaniyan, et al. "Assessment of rice (Co 51) seed ageing through volatile organic compound analysis using Headspace-Solid Phase Micro Extraction/ Gas Chromatography-Mass Spectrometry (HS-SPME/GCMS)." Journal of Applied and Natural Science 14, no. 3 (2022): 903–13. http://dx.doi.org/10.31018/jans.v14i3.3725.
Texte intégralHunziker, Lukas, Denise Bönisch, Ulrike Groenhagen, Aurélien Bailly, Stefan Schulz, and Laure Weisskopf. "Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora infestans." Applied and Environmental Microbiology 81, no. 3 (2014): 821–30. http://dx.doi.org/10.1128/aem.02999-14.
Texte intégralChrit, Mounir, Karine Sartelet, Jean Sciare, et al. "Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region." Atmospheric Chemistry and Physics 18, no. 24 (2018): 18079–100. http://dx.doi.org/10.5194/acp-18-18079-2018.
Texte intégralCappa, C. D., and J. L. Jimenez. "Quantitative estimates of the volatility of ambient organic aerosol." Atmospheric Chemistry and Physics Discussions 10, no. 1 (2010): 1901–38. http://dx.doi.org/10.5194/acpd-10-1901-2010.
Texte intégralCappa, C. D., and J. L. Jimenez. "Quantitative estimates of the volatility of ambient organic aerosol." Atmospheric Chemistry and Physics 10, no. 12 (2010): 5409–24. http://dx.doi.org/10.5194/acp-10-5409-2010.
Texte intégralGao, Chloe Y., Susanne E. Bauer, and Kostas Tsigaridis. "Can semi-volatile organic aerosols lead to fewer cloud particles?" Atmospheric Chemistry and Physics 18, no. 19 (2018): 14243–51. http://dx.doi.org/10.5194/acp-18-14243-2018.
Texte intégralTsimpidi, A. P., V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld. "ORACLE: a module for the description of ORganic Aerosol Composition and Evolution in the atmosphere." Geoscientific Model Development Discussions 7, no. 4 (2014): 5465–515. http://dx.doi.org/10.5194/gmdd-7-5465-2014.
Texte intégral