Littérature scientifique sur le sujet « Origami ADN »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Origami ADN ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Origami ADN"

1

Gould, Paula. « Just add water for polymer origami ». Materials Today 10, no 6 (juin 2007) : 13. http://dx.doi.org/10.1016/s1369-7021(07)70122-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yang, Haitao, Bok Seng Yeow, Zhipeng Li, Kerui Li, Ting-Hsiang Chang, Lin Jing, Yang Li, John S. Ho, Hongliang Ren et Po-Yen Chen. « Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities ». Science Robotics 4, no 33 (28 août 2019) : eaax7020. http://dx.doi.org/10.1126/scirobotics.aax7020.

Texte intégral
Résumé :
The tight integration of actuation, sensing, and communication capabilities into origami robots enables the development of new-generation functional robots. However, this task is challenging because the conventional materials (e.g., papers and plastics) for building origami robots lack design opportunities for incorporating add-on functionalities. Installing external electronics requires high system integration and inevitably increases the robotic weight. Here, a graphene oxide (GO)–enabled templating synthesis was developed to produce reconfigurable, compliant, multifunctional metallic backbones for the fabrication of origami robots with built-in strain sensing and wireless communication capabilities. The GO-enabled templating synthesis realized the production of complex noble metal origamis (such as Pt) with high structural replication of their paper templates. The reproduced Pt origami structures were further stabilized with thin elastomer, and the Pt-elastomer origamis were reconfigurable and served as the multifunctional backbones for building origami robots. Compared with traditional paper and plastic materials, the reconfigurable Pt backbones were more deformable, fire retardant, and power efficient. In addition, the robots with conductive Pt-elastomer backbones (Pt robots) demonstrated distinct capabilities—such as on-demand resistive heating, strain sensing, and built-in antennas—without the need for external electronics. The multifunctionality of Pt robots was further demonstrated to extend beyond the capabilities of traditional paper-based robots, such as melting an ice cube to escape, monitoring/recording robotic motions in real time, and wireless communications between robots. The development of multifunctional metallic backbones that couple actuation, sensing, and communication enriches the material library for the fabrication of soft robotics toward high functional integration.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Treml, Benjamin, Andrew Gillman, Philip Buskohl et Richard Vaia. « Origami mechanologic ». Proceedings of the National Academy of Sciences 115, no 27 (18 juin 2018) : 6916–21. http://dx.doi.org/10.1073/pnas.1805122115.

Texte intégral
Résumé :
Robots autonomously interact with their environment through a continual sense–decide–respond control loop. Most commonly, the decide step occurs in a central processing unit; however, the stiffness mismatch between rigid electronics and the compliant bodies of soft robots can impede integration of these systems. We develop a framework for programmable mechanical computation embedded into the structure of soft robots that can augment conventional digital electronic control schemes. Using an origami waterbomb as an experimental platform, we demonstrate a 1-bit mechanical storage device that writes, erases, and rewrites itself in response to a time-varying environmental signal. Further, we show that mechanical coupling between connected origami units can be used to program the behavior of a mechanical bit, produce logic gates such as AND, OR, and three input majority gates, and transmit signals between mechanologic gates. Embedded mechanologic provides a route to add autonomy and intelligence in soft robots and machines.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lindstrom, Naomi, et Octavio Armand. « Origami ». World Literature Today 62, no 4 (1988) : 631. http://dx.doi.org/10.2307/40144551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Christina-marie. « Origami ». Chicago Review 36, no 3/4 (1989) : 73. http://dx.doi.org/10.2307/25305460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Clark, Arthur. « Origami ». British Journal of Psychiatry 196, no 4 (avril 2010) : 281. http://dx.doi.org/10.1192/bjp.196.4.281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Laurel Oldach. « DNA origami inspired by paper origami ». C&EN Global Enterprise 101, no 23 (17 juillet 2023) : 5. http://dx.doi.org/10.1021/cen-10123-scicon4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ruiz, David D., Karen L. Cardos, Gerardo Soto et Enrique C. Samano. « Gold nanostructures based on DNA Origami templates with applications in nanoelectronics and plasmonics ». MRS Advances 2, no 64 (2017) : 4017–23. http://dx.doi.org/10.1557/adv.2018.177.

Texte intégral
Résumé :
ABSTRACTA major challenge in nanofabrication is the manipulation and exact placement of nano-objects on a specific template. Artificial DNA nanostructures such as DNA origami have garnered significant interest as templates for incorporating nanomaterials at precise sites while the structures are self-assembled. This work shows the usage of the DNA origami technique in the design and fabrication of nanostructures with the shapes of a circle and a triangle using the third part of the M13 virus genome, named mini-M13, as a scaffold. These DNA origami templates were modified to have DNA binding sites with a uniquely coded sequence. This method is used to attach 5 nm gold nanoparticles functionalized with the complementary DNA sequence. Two new metallic nanostructures with different nanoparticle arrays having minimum size but recognizable morphology are provided. The formation and dimensions of the nanostructures were verified using AFM and agarose gel electrophoresis.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kriswanto, Fransiscus Ryan, Wyna Herdiana et Brian Kurniawan Jaya. « Eksperimen Sistem Kinetic Origami Untuk Material Tas ». Anggit : Jurnal Desain Produk 1, no 1 (25 mai 2024) : 45–51. http://dx.doi.org/10.59997/ajdp.v1i1.3649.

Texte intégral
Résumé :
Produk tas merupakan barang yang sangat berkaitan dengan aktifitas manusia, tas dapat membantu pengguna untuk membawa barang dari satu tempat ketempat yang lain. Salah satu kegiatan yang berkatian erat dengan produk ini adala traveling, pada saat ini sudah ada produk tas yang memiliki fitur space saving yang dapat membantu pengguna untuk meringkas tas mereka pada saat tidak digunakan sehingga mampu memaksimalkan ruang, namun dari produk eksisting yang sudah ada ditemukan beberapa kekurangan yaitu susahnya mengembalikan produk ke ukuran yang ringkas dikarenakan tatacara lipat yang panjang, dengan tatacara lipat yang salah produk juga dapat beresiko untuk cepat rusak. Dari permasalahan tersebut ditemukan salah satu sistem yang memiliki peluang untuk menyelesaikan permasalahan yaitu sistem kinetic origami. Sistem ini dapat berpeluang untuk dikombinasikan dengan produk tas yang dapat membantu pengguna untuk meringkas tas dengan mudah dan memiliki ciri khas tersendiri dari segi visual. Dalam penelitian ini akan dilakukan eksperimen pada beberapa material tas yang bertujuan untuk menemukan material paling cocok dalam menerapkan sistem kinetic origami tersebut.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ferreira, Arnaldo Dias, Elaine de Farias Giffoni de Carvalho, Lara Ronise de Negreiros Pinto Scipião, Francisco Régis Vieira Alves et Maria José Costa dos Santos. « Oficina de Origami : Um recurso estratégico para o ensino de Geometria ». Research, Society and Development 10, no 8 (15 juillet 2021) : e42410817423. http://dx.doi.org/10.33448/rsd-v10i8.17423.

Texte intégral
Résumé :
Este artigo é um estudo descritivo-exploratório, do tipo relato de experiência e objetiva apresentar os resultados obtidos na oficina: “Origami, Geometria e Diversão”, realizada no VIII Diálogos da Matemática com a Pedagogia (DIMA). O procedimento metodológico dessa oficina foi pautado de acordo com os pressupostos da metodologia Sequência Fedathi (SF), com base em suas fases: Tomada de posição, Maturação, Solução e Prova; e se deu por meio da investigação em sala de aula, utilizando como técnicas de coleta de dados, a observação dos sujeitos e aplicação de um questionário avaliativo. Como principais resultados, observou-se que na Tomada de Posição, com a situação-problema proposta, os participantes, principalmente os estudantes do Curso de Pedagogia da Faculdade de Educação da Universidade Federal do Ceará, tiveram dificuldades em identificar os conceitos geométricos nos Origamis e que na fase da Prova, constatou-se que foi determinante a confecção de origamis em formato de cubo para a compreensão dos conceitos geométricos trabalhados. Depreendeu-se que o objetivo da oficina foi alcançado, tendo em vista que os participantes compreenderam a relação entre as formas produzidas em Origami e o ensino de Geometria, além disso, os mesmos, se sentiram interessados a usar essa técnica durante as suas práticas em sala de aula.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Origami ADN"

1

Hazard, Octave. « Controlling DNA Origami Co-folding ». Electronic Thesis or Diss., Lyon, École normale supérieure, 2025. http://www.theses.fr/2025ENSL0007.

Texte intégral
Résumé :
L’origami ADN est une technique particulièrement robuste permettant de concevoir des structures en ADN, souvent de l’ordre de la centaine de nanomètres. Introduite en 2006 par Paul Rothemund, cette technique repose sur le repliement contrôlé d’un long brin d’ADN appelé scaffold (de quelques milliers de nucléotides), au moyen d’un ensemble de brins synthétiques plus courts bien choisis, appelés agrafes. Elle se prête particulièrement bien à la conception de structures complexes en deux ou trois dimensions. Cependant, la taille de ces origamis ADN est limitée par la longueur du scaffold. Plusieurs travaux proposent d’assembler en plusieurs étapes un certain nombres d’origamis ADN identiques pour atteindre des tailles supérieures (Rajendran et al., 2011, Tikhomirov et al., 2017, Wintersinger et al., 2023). Nous avons, quant à nous, cherché à déterminer s’il était possible de concevoir des origamis ADN comprenant plusieurs brins scaffold identiques mais se repliant de façon différenciée pour former différentes composantes de la structure voulue. Cela nécessite un travail particulier de conception de l’origami, mais également de compréhension du processus de repliement qui mène à son assemblage correct. Cette thèse comporte donc plusieurs aspects : l’exploration des techniques de design d’origamis ADN à plusieurs scaffolds, les réalisations expérimentales associées à ces techniques ainsi qu’une proposition de modélisation du processus de repliement. Je propose notamment une méthode de sélection d’un petit sous-ensemble d’agrafes, permettant de pré-former séparément les scaffolds de l’origami afin qu’ils se différencient convenablement lors de l’assemblage final. J’explore également l’usage de cette méthode pour l’assemblage de formes frustrées en origami ADN, ainsi qu’une méthode alternative de différenciation, basée sur l’utilisation d’un origami supplémentaire comme moule. Je présente enfin un travail annexe explorant les pistes théoriques et expérimentales pour la création de quasi-cristaux en brins d’ADN
DNA origami is a particularly robust technique for designing DNA structures, often on the order of hundreds of nanometers. Introduced in 2006 by Paul Rothemund, this technique relies on the controlled folding of a long scaffold DNA strand (a few thousand nucleotides long), using a set of carefully chosen shorter synthetic strands acting as staples. It is particularly well-suited for designing complex structures in two or three dimensions. However, the size of these DNA origamis is limited by the length of the scaffold strand. Several studies propose assembling identical DNA origamis in multiple steps to achieve larger sizes (Rajendran et al., 2011, Tikhomirov et al., 2017, Wintersinger et al., 2023). We have sought to determine whether it is possible to design DNA origamis comprising several identical scaffold strands but each folding differently to form various components of the desired structure. This requires particular work on the design of the origami, but also an understanding of the folding process that leads to its correct assembly. This thesis therefore involves several aspects: exploring algorithmic and geometrical techniques for designing DNA origamis with multiple scaffolds, the experimental implementations associated with these techniques, and modeling the folding and assembly process. In particular, I propose and evaluate several algorithmic methods for selecting a small subset of staples, allowing the pre-formation of the origami scaffolds separately so that they differentiate properly during the final assembly. Furthermore, I explore the usage of this method for assembling frustrated shapes with DNA origami, as well as an alternative differentiation method based on an additional mold origami. My thesis concludes with an ancillary work exploring theoretical and experimental approaches for assembling quasi-crystals with DNA strands algorithmically
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tran, Phong Lan Thao. « Quadruplexes de guanines : formation, stabilité et interaction ». Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21888/document.

Texte intégral
Résumé :
Les quadruplexes de guanines (G4) sont des structures non canonique d’acides nucléiques à quatre brins formées à partir de séquences ADN ou ARN riches en guanines. Ces structures reposant sur la formation et l’empilement de quartets de guanines sont très polymorphes, leur formation pourrait être envisagé dans de nombreux domaines d’application, aussi bien pour les biotechnologies que les nanotechnologies. L’étude de G4 tétramoléculaires modifiés présentée dans ce manuscrit a participé à la compréhension du mécanisme d’association de ces complexes. En particulier, nous avons montré que l’insertion de 8-méthyle-2’-déoxyguanosine à l’extrémité 5’ de la séquence favorise l’association et la stabilité du G4. Par ailleurs, l’étude de l’ADN en série L (image de l’ADN naturel dans un miroir) a montré la formation d’un G4 tétramoléculaire avec les mêmes propriétés que son énantiomère, à l’exception de sa chiralité, qui est inversée. L’étude a révélé également une auto-exclusion de deux énantiomères (forme D et forme L) démontrant un assemblage contrôlé des brins parallèles. Ce travail de thèse a aussi permis d’introduire un système simple et stable de visualisation de G4 tétramoléculaire antiparallèle, appelé “ADN synaptique”, sur une nanostructure d’ADN origami. In vivo, ces structures pourraient être impliquées de façon transitoire dans de nombreux processus biologiques, en particulier au niveau des télomères. Nous avons réalisé, au cours de cette thèse, une étude comparative de la structure et de la stabilité des séquences télomériques connues de différents organismes. Cette étude a permis d’enrichir les données nécessaires au développement d’un algorithme prédisant la stabilité de G4. Enfin, nous avons développé une méthode facile et peu coûteuse de criblage (G4-FID) sur plaques 96 puits permettant d’identifier l’interaction de ligands avec différentes séquences biologiques pertinentes. La stabilisation du G4 dans certaines régions du génome via des ligands spécifiques pourrait limiter la prolifération de cellules tumorales et est donc intéressante pour les thérapies anticancéreuses
Guanine quadruplexes (G4) are non-canonical four-stranded nucleic acid structures formed by guanine-rich DNA and RNA sequences. Theses polymorphic structures are built from the stacking of several G-quartets and could be involved in many fields, in biotechnology as well as in nanotechnology. The study of modified tetramolecular G4 presented in this manuscript participated to the understanding of tetramolecular G4 formation. Especially, we showed that the insertion of 8-methyl-2’-deoxyguanosine at the 5’-end of the sequence accelerate G4 formation and increase its stability. Besides, we demonstrate here that short guanine rich L-DNA strands (mirror image of natural DNA) form a tetramolecular G4 with the same properties than their enantiomer, but with opposite chirality. The study revealed also self-exclusion between two enantiomers (D- and L- form), showing the controlled parallel self-assembly of different G-rich strands. This work introduced also a simple and stable system to observe tetramolecular antiparallel G4 formation, called “synaptic DNA”, into a DNA origami nanostructure. In vivo, such structures appear to be implicated in genome dynamics, and especially at telomeres. During this thesis, we dedicated a study to the comparison of G4 folding and stability of known telomeric sequences from different organisms. The present study allowed enriching the dataset necessary to build and refine algorithms predicting G4 stability. Last but not least, we developed a G4 ligand screening method onto 96-well plates allowing the comparison of different biological relevant sequences. The G4 stabilisation by specific ligands in some genome regions may prevent cancer cell proliferation, making it an attractive target for anticancer therapy
Styles APA, Harvard, Vancouver, ISO, etc.
3

Arbona, Jean-Michel. « Origami d’ADN : étude des propriétés mécaniques et du processus de formation ». Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14585/document.

Texte intégral
Résumé :
L' objet d'étude de cette thèse est l' origami d' ADN. Le nombre important d'applications utilisant cette technique, et leurs diversités, sont des preuves que ces structures présentées en 2007 sont une avancée importante pour la technologie ADN. Dans cette thèse nous présentons dans un premier temps les résultats de simulations sur les propriétés mécaniques de ces nouvelles structures. Les résultats d'expériences et de simulations sur le processus de formations pour de petites structures d'ADN et sur des origamis d'ADN sont présentés dans une deuxième partie. Finalement une application de ces structures à la détection SERS est proposée, et les résultats expérimentaux concernant la réalisation de cette structure sont discutés
DNA origami are new nanostructures (2006) whose physical properties are still to be understood. In this work we were first interested in their mechanical properties. The first approach of this study was through the use of polymer physics, as it is the classical way to study DNA. We then used computer simulations to model the system in a more detailed manner and to extract general rules on the mechanical behaviour of DNA constructs. The other aspect that we studied is the process of formation of DNA origamis. We first realised an experimental study of the process of formation of the simplest origami that we could envision. This study was intended to investigate basic principles on the process of formation of DNA structures. A coarse grain model is then developed to have a first insight onto the formation process. Then an experimental study on large origamis follows with a modeling of the annealing and melting curves based on the principles determined from the study of the simplest origami. We also worked on the development of a SERS platform
Styles APA, Harvard, Vancouver, ISO, etc.
4

Marcus, Pierre. « Toward Scalable DNA algorithms ». Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0024.

Texte intégral
Résumé :
Le domaine du calcul par ADN consiste à utiliser l'ADN comme un matériau dynamique. En interagissant ensemble, les brins d’ADN peuvent implémenter de petits algorithmes et effectivement calculer. Par exemple, l’état de l’art permet l’évaluation de circuits logiques, où les informations de l’évaluation des circuits sont encodées dans les reconfigurations d’assemblage de brins d'ADN. Un autre exemple d’approche consiste à attacher des brins d'ADN selon des règles définies, proches du Le domaine du calcul par ADN consiste à utiliser l'ADN comme un matériau dynamique. En interagissant ensemble, les brins d’ADN peuvent implémenter de petits algorithmes et effectivement calculer. Par exemple, l’état de l’art permet l’évaluation de circuits logiques, où les informations de l’évaluation des circuits sont encodées dans les reconfigurations d’assemblage de brins d'ADN. Un autre exemple d’approche consiste à attacher des brins d'ADN selon des règles définies, proches du concept de tuiles de Wang, sur des substrats constitués de grands objets fait en ADN, appelés origami d'ADN. Cependant, toutes les approches actuelles sont confrontées au défi du passage à l’échelle. Dans la plupart des designs, la taille de l'entrée du problème est liée, soit aux caractéristiques de l'origami d'ADN, soit au nombre de brins d'ADN mélangés dans l’expérience. Cependant, ce nombre de brins est limité à la fois d'un point de vue pratique, et aussi d'un point de vue théorique. En effet, le risque d’hybridation d’ADN non voulue augmente avec le nombre de brins. Dans cette thèse, nous voulons résoudre ce sujet de scalabilité, sur le problème particulier de la résolution de labyrinthes. Ce problème a déjà été résolu, mais de manière non réversible et non scalable. Nous proposons dans ce travail d'implémenter une marche aléatoire réversible sur un origami d'ADN. Notre objectif est double. Tout d'abord, nous concevons un design composé d’un nombre fixe de seulement quatre brins différents, quelle que soit la taille du labyrinthe. Ensuite, nous proposons l'utilisation de la réversibilité, qui est un facteur clé, car elle permet d'exploiter le hasard pour tenter de revenir en arrière pour effacer les erreurs d'hybridation. Dans la première partie, nous avons mené des expériences au cours desquelles nous avons fixé des chemins de manière statique sur un origami d'ADN que nous avons conçu. Nous validerons notre capacité à mener, observer et traiter ces expériences. Dans la seconde partie, nous proposons une implémentation d'une marche aléatoire réversible grâce à une variante de la technique de toehold exchange strand displacement. Nous avons mené et développé des expériences sur cette variante grâce à une approche bottom-up. Cette approche bottom-up expérimente d’abord en imitant la présence d’origami d’ADN grâce à des structures d’ADN plus petites. Puis dans un second temps en ajoutant la présence d’un origami d’ADN
The DNA computing field consists in using DNA as dynamic building blocks. By interacting together, they can implement small algorithms and effectively compute. Many successful approaches were made. For instance, by implementing logical circuits where reconfigurations of DNA complexes progressively evaluate the network. Another approach is to attach DNA strands according to defined rules to a substrate made of large DNA objects called DNA origami. However, all the current approaches face the challenge of scalability. In most designs, the size of the input is linked to either the DNA origami or the number of strands. The number of strands, is limited not only technically but also theoretically, as there is an inherent chance of hybridization error between two strands that are not fully complementary. In this thesis, we want to solve this scalability issue on the particular problem of maze solving. This problem was already solved in both in a non-reversible and non-scalable fashion. We propose to implement a reversible random walk walker on a DNA origami. Our point is twofold. First, we can make a design with only four different strands, no matter the size of the maze. Most importantly, using reversibility is a key factor, as it can harness randomness to reverse hybridization errors. In the first part, we conducted experiments where we attached static paths made of DNA strands on a DNA origami. We will validate our ability to both conduct, observe and process these experiments. In the second part, we propose an implementation of a reversible random walk using a variation of the toehold mediated strand displacement technique. We have conducted and developed experiments on this variation using a bottom-up approach. Our experiments led to preliminary results of the technique on a DNA origami
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rossi-Gendron, Caroline. « Dynamic DNA origamis as isothermal supramolecular machines : melting dynamics, photocontrol and isothermal folding ». Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS522.

Texte intégral
Résumé :
Les origamis d’ADN et les Single Stranded Tiles (SST) semblent être deux des composants les plus prometteurs du domaine des nanotechnologies d’ADN en termes de conceptions et d'applications possibles. Dans cette thèse, nous avons exploré les aspects thermodynamiques et cinétiques sous-jacents à la formation de ces objets, ainsi que de nouvelles méthodes pour construire des nanoobjets programmables dynamiques. Notamment, l'étude du processus de formation a mis en évidence la présence inutile d'ions magnésium ou de molécules tampons dans le milieu, et de nouvelles conditions de formation ont été décrites. Le processus de fusion a été caractérisé à l'aide d'une nouvelle méthode d'électrophorèse sur gel quantifiée mettant en évidence un comportement non monotone et appelant une nouvelle définition de la température de fusion des origamis. De plus, nous avons démontré que la formation et la fusion pouvaient être contrôlées par la lumière en utilisant AzoDiGua, un intercalant d’ADN photosensible mis au point précédemment par notre groupe. Cela nous a permis d'observer pour la première fois un processus d'hybridation/déshybridation contrôlé par la lumière au sein d'origamis individuels à température constante et d'obtenir ainsi un mouvement contrôlé à l'échelle nanométrique. Nous avons également mis au point une méthode originale pour la formation isotherme d’ADN origamis et de SST à température ambiante constante et en l’absence de tout agent dénaturant. Cela nous a permis d'observer pour la première fois et in situ le pliage isotherme d'origamis individuels, démontrant ainsi que l'origami peut atteindre sa forme d'équilibre final en suivant une variété de voies de pliage
DNA origamis and Single Stranded Tiles (SST) appear to be two of the most promising components of the DNA nanotechnology field in terms of possible designs and applications. In this thesis, we explored the thermodynamic and kinetic aspects underlying DNA nanostructures formation as well as new practical ways to build dynamic programmable nano-objects. Notably, the study of the formation process evidenced the unnecessary presence of magnesium ions or buffering molecules in the medium, and new formation conditions have been described. The melting process triggered by temperature elevation was characterised using a new quantified gel electrophoresis method evidencing for the first time a non-monotonous behaviour and calling for a new definition of DNA origami melting temperature. Both formation and melting process were furthermore demonstrated to be controllable by light using AzoDiGua, a photosensitive DNA intercalator previously developed by our group. This allowed us to observe for the first time a light-controlled hybridisation / dehybridisation process within individual origamis at constant temperature and thus achieve a controlled motion at the nanoscale. We also established an original method for the isothermal formation of DNA origamis and SST at constant room temperature and without the presence of any denaturating agent. This allowed us to observe for the first time and in situ the isothermal folding of individual origamis, thus evidencing that origamis can reach their final equilibrium shape following a variety of folding pathways
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sousa, Luzia Georgeth Pereira de. « Estratégias biomoleculares para identificação de diferentes espécies animais em salsichas frescas e conservadas ». Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21471.

Texte intégral
Résumé :
Mestrado em biologia molecular e celular
O tema da alimentação é cada vez mais pertinente, visto que está subjacente a todas as pessoas, independentemente do país e costumes culturais.Todo o ser humano necessita de se alimentar. Como tal, a manutenção da segurança e qualidade alimentar é de grande importância na sociedade atual. Existe uma relação íntima entre a alimentação e a saúde humana. Certos países em vias de desenvolvimento, como é o caso de Angola, passam por deficit alimentar e as doenças causadas devido a carência de determinados nutrientes é visível. Será de esperar que com os avanços tecnológicos se consiga fazer chegar comida com um determinado grau de qualidade ao número máximo de pessoas do mundo mas, para tal, é necessário garantir o controlo e minimizar a ocorrência de fraudes alimentares. Têm sido verificadas ações fraudulentas na classe dos enchidos como adição de carnes que não estão devidamente mencionadas nos rótulos ou substituição da matéria prima. Este acontecimento põe em causa a segurança alimentar. Deste modo é necessário criar medidas que possam erradicar todos os casos de fraudulência identificáveis. Utilizando uma estratégia biomolecular, é possível proceder à despistagem de carnes contaminantes em produtos cárneos processados. Em Portugal, a ASAE tem divulgado informações pertinentes ao consumidor relativas à autenticidade, rotulagem e rastreabilidade do produto e isto tem permitido um fácil acesso do cliente aos resultados laboratoriais que confirmam ou não casos fraudulentos. Subentende-se a relevância que a PCR em tempo real com recurso a primers específicos tem tido em análises deste cariz. Este trabalho tem como objetivo descrever alguns métodos de anáise molecular que são utilizados corriqueiramente em determinadas associações como a ASAE e enunciar e discutir sobre um estudo feito entre 2015 e junho de 2017 pela ControlVet, uma empresa privada que tem participado vigorosamente na identificaçao de fraudes recorrendo á PCR em tempo real. Hoje, o consumidor interessa-se pela natureza do produto que consome. A luta contra a falsificação alimentar só pode ser eficaz quando todos velarem pela qualidade do alimento que está disponível no mercado, de modo a que não haja riscos na saúde pública e de modo a que o preço do produto corresponda a essa qualidade.
The issue of food is increasingly relevant as it underlies all people regardless of country and cultural customs. Every human being needs food. As such, maintaining food safety and quality is of great importance in today's society. There is an intimate relationship between food and human health. Some developing countries, such as Angola, are suffering from food shortages and diseases caused by a lack of certain nutrients. It is expected that with the evolution of technological advance, it will be possible to get food of a certain quality to the maximum number of people in the world, but it is necessary to guarantee control and minimize the occurrence of food fraud. In the last few years, fraudulent actions have been verified in food like sausages, such as adding meats that are not properly mentioned on the labels or substitution of the raw material. These sort of events make us ask if the food control is being mantained. Therefore, it is necessary to create measures that can eradicate all identifiable fraudulent cases. By using biomolecular strategies, it is possible to identify contaminated meat in processed meat products. In Portugal, ASAE has divulged pertinent information to the consumer regarding the authenticity, labeling and traceability of the product and this has allowed an easy access of the client to lab results that confirm or not fraudulent cases. It is clear that real-time PCR using specific primers has a large relevance in all this. This paper aims to describe some methods of molecular analysis that are used routinely in certain associations such as ASAE and to state and discuss a study done between 2015 and June 2017 by ControlVet, a private company that has participated vigorously in the identification of frauds using real-time PCR as methodology. Today, consumers are interested in the nature of the product they consume. The fight against food counterfeiting can only be effective when everyone is vigilant about the quality of the food that is available on the market in order to minimize the risk to public health and to assure that the price of the product corresponds to its quality.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Origami ADN"

1

Norvell, Elmer A. Airigami : Realistic origami aircraft. Mineola, N.Y : Dover Publications, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Norvell, Elmer A. Airigami : Realistic origami aircraft. Mineola, N.Y : Dover Publications, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Keskar, Ravindra. Square pegs in round holes : Mathematics through origami. New Delhi : Vigyan Prasar, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Keiko, Nakazawa, dir. Origami kenchiku Nara no tabi. Tōkyō : Shōkokusha, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Keiko, Nakazawa, dir. Origami kenchiku Nara no tabi. Tōkyō : Shōkokusha, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Baicker, Karen. Origami math : Grades 4-6. New York : Teaching Resources, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Baicker, Karen. Origami math : Grades 4-6. New York : Teaching Resources, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Thomas, Hull. Project Origami : Activities for Exploring Mathematics. Wellesley, Massachusetts : A.K. Peters, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Thomas, Hull. Project origami : Activities for exploring mathematics. Boca Raton : CRC Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hanson, Robert M. Molecular origami : Precision scale models from paper. Sausalito, Calif : University Science Books, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Origami ADN"

1

Hull, Thomas. « Origami ». Dans Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 3457–60. Dordrecht : Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7747-7_8818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Alani, Mostafa, Michael C. Kleiss et Arash Soleimani. « Responsive Origami ». Dans Distributed, Ambient and Pervasive Interactions, 3–12. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50344-4_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hobson, Kersty. « Business Origami ! » Dans Teaching and Learning Sustainable Consumption, 308–11. London : Routledge, 2023. http://dx.doi.org/10.4324/9781003018537-53.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Edwards, Angela, et Hao Yan. « DNA Origami ». Dans Nucleic Acids and Molecular Biology, 93–133. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38815-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ida, Tetsuo. « Origami, Paper Folding, and Computational Origami ». Dans An Introduction to Computational Origami, 1–10. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-59189-6_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ida, Tetsuo. « Abstract Origami ». Dans An Introduction to Computational Origami, 169–201. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-59189-6_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Drobnak, Igor, Ajasja Ljubetič, Helena Gradišar, Tomaž Pisanski et Roman Jerala. « Designed Protein Origami ». Dans Advances in Experimental Medicine and Biology, 7–27. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39196-0_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lu, Heng, Daekwon Park, Chen Liu, Guohua Ji et Ziyu Tong. « Pneumatic Origami Joints ». Dans Communications in Computer and Information Science, 327–40. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8410-3_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Beklemishev, Lev, Anna Dmitrieva et Johann A. Makowsky. « Axiomatizing Origami Planes ». Dans Dick de Jongh on Intuitionistic and Provability Logics, 353–77. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-47921-2_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ida, Tetsuo. « Simple Origami Geometry ». Dans An Introduction to Computational Origami, 11–42. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-59189-6_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Origami ADN"

1

Xi, Zhonghua, et Jyh-Ming Lien. « Folding Rigid Origami With Closure Constraints ». Dans ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35556.

Texte intégral
Résumé :
Rigid origami is a class of origami whose entire surface remains rigid during folding except at crease lines. Rigid origami finds applications in manufacturing and packaging, such as map folding and solar panel packing. Advances in material science and robotics engineering also enable the realization of self-folding rigid origami and have fueled the interests in computational origami, in particular the issues of foldability, i.e., finding folding steps from a flat sheet of crease patterns to desired folded state. For example, recent computational methods allow rapid simulation of folding process of certain rigid origamis. However, these methods can fail even when the input crease pattern is extremely simple. This paper attempts to address this problem by modeling rigid origami as a kinematic system with closure constraints and solve the foldability problem through a randomized method. Our experimental results show that the proposed method successfully fold several types of rigid origamis that the existing methods fail to fold.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zimmermann, Luca, Tino Stanković et Kristina Shea. « Finding Rigid Body Modes of Rigid-Foldable Origami Through the Simulation of Vertex Motion ». Dans ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67802.

Texte intégral
Résumé :
Designing structures through the means of origami brings many advantages for engineering applications. In current research, the underlying origami principle is often selected based on experience out of a range of known patterns and then manually altered to fit the design problem. This tedious and time-consuming procedure, if automated through computational tools, has the potential to facilitate the design of origami engineering applications. This however requires efficient kinematic simulation of origamis that is also able to accommodate to design requirements specific to foldable structures. In this paper, a simulator is implemented that is able to model the motion of origami vertices without the need for mountain-valley assignments and with a path of deployment as activation. The formulation of constraint equations through these vertex positions does not restrict the system to certain folding configurations, which is why the approach is able to detect different rigid body modes resulting from single activations. Finding rigid body modes can be beneficial for the search of design alternatives conforming to certain input requirements. The results of the simulation show promise for the incorporation of the simulator within an automated procedure for the design of origamis.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stellman, Paul, et George Barbastathis. « Actuation Control for Nanostructured Origami™ ». Dans ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16319.

Texte intégral
Résumé :
The fabrication of arbitrary nanostructured devices in 3D space is relevant to many areas of academic and industrial research. From hybrid systems with various physical features to complex 3D optical interconnects, the added functionality gained by 3D nanomanufacturing is promising for the development of novel applications. Nevertheless, the 2D nature of conventional nanomanufacturing processes (i.e. lithography) underutilizes the 3rd dimension since there is currently no infrastructure for 3D. Nanostructured Origami has been proposed [1-3] as one solution to the 3D nanomanufacturing problem. The two-step process consists of first patterning devices and creases (axes of rotation) in 2D followed by a subsequent folding step which actuates the origamis to its final 3D shape. Several actuation mechanisms have been investigated for the folding step, and the folding of simple origamis with an open kinematic chain has been successfully demonstrated experimentally [1-3]. Since the origami segments must be accurately aligned in the 3D folded state, the actuation mechanisms for Nanostructured Origami must be both controllable and repeatable. By developing analytical models of the origamis, control schemes can be simulated to aid in the manufacturing of devices in the laboratory. As an example, a PD control scheme is introduced to achieve set-point position control of an example origami, the corner cube. In the laboratory, a PD control system would be built using a magnetic feedback mechanism. A strip of gold is patterned as a hinge material, and electrical current passes through the wire. In the presence of a magnetic field, the Lorentz force acts upon the origami segments and the resulting torque is given by τ = Cicos α,[Equation] where C is a positive constant, i is the current, and α is the angle between the magnetic field and the current. The PD control law for Nanostructured Origami is equivalent to PD control of an articulated robotic manipulator, with the exception that gravity can be ignored due to the low masses of the membranes. Instead, the stiffnesses of the hinges must be balanced, resulting in a control torque of [Equation] where τ is the vector of joint torques, G is the constraint Jacobian, Kp is the proportional control constant, Kd is the derivative control constant, K is the hinge stiffness matrix, q is the vector of joint angles, and qd is the desired steady-state values of the joint angles. This input torque is applied to the origami device, and the response is calculated by integrating the system's equations of motion [3]. The angular response of the PD controller for the corner cube origami is plotted in Fig. 1, and Fig. 2 shows a schematic of the folding of the corner cube from flat to folded state. Note the well-behaved response for a Kp value of 1500, which demonstrates zero overshoot and a rise time of approximately 15 milliseconds. A plot of the joint torques as a function of time is shown in Fig. 3. This abstract has briefly introduced the use of a PD controller for the actuation of origami devices. For a Lorentz force actuation scheme, we have demonstrated through simulations that the PD control law is stable and robust. If complicated 3D origamis with multiple closed kinematic chains are to be built, detailed control laws must be implemented. Advanced control techniques, such as optimal control, will be investigated to explore improved actuation strategies.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xia, Yutong, Hongbin Fang et K. W. Wang. « Exploring the Dynamic Characteristics of Degree-4 Vertex Origami Metamaterials ». Dans ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3810.

Texte intégral
Résumé :
Origami-inspired mechanical metamaterials could exhibit extraordinary properties that originate almost exclusively from the intrinsic geometry of the constituent folds. While most of current state of the art efforts have focused on the origami’s static and quasi-static scenarios, this research explores the dynamic characteristics of degree-4 vertex (4-vertex) origami folding. Here we characterize the mechanics and dynamics of two 4-vertex origami structures, one is a stacked Miura-ori (SMO) structure with structural bistability, and the other is a stacked single-collinear origami (SSCO) structure with locking-induced stiffness jump; they are the constituent units of the corresponding origami metamaterials. In this research, we theoretically model and numerically analyze their dynamic responses under harmonic base excitations. For the SMO structure, we use a third-order polynomial to approximate the bistable stiffness profile, and numerical simulations reveal rich phenomena including small-amplitude intrawell, large-amplitude interwell, and chaotic oscillations. Spectrum analyses reveal that the quadratic and cubic nonlinearities dominate the intrawell oscillations and interwell oscillations, respectively. For the SSCO structure, we use a piecewise constant function to describe the stiffness jump, which gives rise to a frequency-amplitude response with hardening nonlinearity characteristics. Mainly two types of oscillations are observed, one with small amplitude that coincides with the linear scenario because locking is not triggered, and the other with large amplitude and significant nonlinear characteristics. The method of averaging is adopted to analytically predict the piecewise stiffness dynamics. Overall, this research bridges the gap between the origami quasi-static mechanics and origami folding dynamics, and paves the way for further dynamic applications of origami-based structures and metamaterials.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fragale, Gavin, et Angela Uriyo. « Origami ». Dans Making Waves Toward A Sustainable and Equitable Future. Iowa State University Digital Press, 2025. https://doi.org/10.31274/itaa.17696.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Stellman, P., W. Arora, S. Takahashi, E. D. Demaine et G. Barbastathis. « Kinematics and Dynamics of Nanostructured Origami™ ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81824.

Texte intégral
Résumé :
Two-dimensional (2D) nanofabrication processes such as lithography are the primary tools for building functional nanostructures. The third spatial dimension enables completely new devices to be realized, such as photonic crystals with arbitrary defect structures and materials with negative index of refraction [1]. Presently, available methods for three-dimensional (3D) nanopatterning tend to be either cost inefficient or limited to periodic structures. The Nanostructured Origami method fabricates 3D devices by first patterning nanostructures (electronic, optical, mechanical, etc) onto a 2D substrate and subsequently folding segments along predefined creases until the final design is obtained [2]. This approach allows almost arbitrary 3D nanostructured systems to be fabricated using exclusively 2D nanopatterning tools. In this paper, we present two approaches to the kinematic and dynamic modeling of folding origami structures. The first approach deals with the kinematics of unfolding single-vertex origami. This work is based on research conducted in the origami mathematics community, which is making rapid progress in understanding the geometry of origami and folding in general [3]. First, a unit positive “charge” is assigned to the creases of the structure in its folded state. Thus, each configuration of the structure as it unfolds can be assigned a value of electrostatic (Coulomb) energy. Because of repulsion between the positive charges, the structure will unfold if allowed to decrease its energy. If the energy minimization can be carried out all the way to the completely unfolded state, we are simultaneously guaranteed of the absence of collisions for the determined path. The second method deals with dynamic modeling of folding multi-segment (accordion style) origamis. The actuation method for folding the segments uses a thin, stressed metal layer that is deposited as a hinge on a relatively stress free structural layer. Through the use of robotics routines, the hinges are modeled as revolute joints, and the system dynamics are calculated.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kaloper, Nemanja. « Origami World ». Dans THE NEW COSMOLOGY : Conference on Strings and Cosmology ; The Mitchell Symposium on Observational Cosmology. AIP, 2004. http://dx.doi.org/10.1063/1.1848337.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xie, X., C. Kelly, T. Liu, R. J. Lang, S. Gandolfo, Y. Boukataya et C. Livermore. « ORIGAMI-ENABLED MICROFLUIDICS ». Dans 2018 Solid-State, Actuators, and Microsystems Workshop. San Diego : Transducer Research Foundation, 2018. http://dx.doi.org/10.31438/trf.hh2018.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yang, Yang, Ichiro Hagiwara, Luis Diago et Junichi Shinoda. « An Origami Crease Pattern Generating Methodology for “Origami 3D Printer” ». Dans ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97715.

Texte intégral
Résumé :
Abstract The additive 3D printer (hereafter called Add-3D) creates a 3D object with materials being added together layer by layer. Before printing an object, some professional processes are indispensable, such as creating the 3D printable models by computer-aided design (CAD), or 3D scanner, and STL data modification, which are difficult for normal families. As we know, primordially, origami is the ancient art of folding a flat-piece of paper into a 3D shape, that even can be played by kids. So we aim to develop an Origami 3D printer (hereafter called Ori-3D) that can be used by ordinary families with the features of effort and no size limit of model. In Ori-3D, the object is constructed by human hands or by an Origami robot using 2D patterns generated from 3D data (obtained from photos or CAD). Ori-3D includes the following steps: 1) the surface of an object is segmented to several developable surfaces as large as possible using segmentation technique which is used in reverse engineering system. 2) Each developable surface is developed to 2D pattern with mountain & valley lines and glue parts. 3) The 2D crease pattern is optimized by a tree structure method to be easily folded by an Origami Robot. 4) With Origami robot, the object is easily constructed from the improved 2D crease pattern. This paper focuses on discuss the steps 1∼ 3: generation of the 2D crease pattern.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Oka, Sora, Kazuki Koyama, Tomoyuki Gondo, Yasushi Ikeda, Yoshihiro Kawahara et Koya Narumi. « Pneumatic Laser Origami ». Dans TEI '25 : Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–12. New York, NY, USA : ACM, 2025. https://doi.org/10.1145/3689050.3704956.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Origami ADN"

1

Wieselquist, William A., Adam B. Thompson, Stephen M. Bowman et Joshua L. Peterson. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis. Office of Scientific and Technical Information (OSTI), avril 2016. http://dx.doi.org/10.2172/1247939.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Souza, Carlota Rocha de Matos, et Cibele Isaac Saad Rodrigues. Manual ilustrado de boas práticas para acessos vasculares para hemodiálise. Pontifícia Universidade Católica de São Paulo. Faculdade de Ciências Médicas e da Saúde, décembre 2023. http://dx.doi.org/10.23925/ripucsp/40716.

Texte intégral
Résumé :
Foi elaborado um guia de boas práticas para manipulação de acessos vasculares para hemodiálise ilustrado, que está contido na dissertação de mestrado como Anexo, intitulado: “Guia de boas práticas para manipulação de acessos vasculares de hemodiálise desenvolvido como material educativo para as clínicas participantes”. Esse manual ensina o passo a passo e os cuidados para manipulação de acessos vasculares para hemodiálise, cateter venoso central e fístula arteriovenosa (CVC e FAV). Esse mesmo estudo que deu origem ao manual pode ter continuidade e ser empregado como base para futuras análises de outros procedimentos utilizados em clínicas de hemodiálise e contribuir, dessa forma, para o conhecimento na área de enfermagem em nefrologia, que ainda carece de estudos, especialmente envolvendo a equipe técnica de enfermagem em unidades de hemodiálise, local de alta complexidade e de risco para a ocorrência de eventos adversos, mas também de melhorias substantivas da assistência. Foram aplicados três instrumentos de coleta de dados: o primeiro para traçar o perfil sociodemográfico dos participantes no primeiro encontro. O segundo, elaborado pelas pesquisadoras e validado por nove juízes, e foi baseado no inquérito KAP (Knowledge, Attitudes and Practice), que foi aplicado pré e pós-intervenção imediata e tardia (3 meses após o término) e o terceiro constituiu-se em pesquisa de satisfação utilizando o Net Promoter Score. Todos esses instrumentos podem ser utilizados em trabalhos semelhantes de capacitação interprofissional em TEA.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie