Articles de revues sur le sujet « Oxide-based heterostructures »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Oxide-based heterostructures ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Lee, Sang Woon. "Two-Dimensional Electron Gas at SrTiO3-Based Oxide Heterostructures via Atomic Layer Deposition." Journal of Nanomaterials 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1671390.
Texte intégralNguyen, Dong Tri, Viet Vu Quoc, Wonhyuk Son, et al. "Growth, domain structure, and magnetic properties of CaMnO3(110) and La0.7Ca0.3MnO3(110) layers synthesized on hexagonal YMnO3(0001)." CrystEngComm 19, no. 35 (2017): 5269–74. http://dx.doi.org/10.1039/c7ce01187c.
Texte intégralXiao, Haodong, Lin Lin, Jia Zhu, et al. "Highly sensitive and broadband photodetectors based on WSe2/MoS2 heterostructures with van der Waals contact electrodes." Applied Physics Letters 121, no. 2 (2022): 023504. http://dx.doi.org/10.1063/5.0100191.
Texte intégralБлохин, С. А., В. Н. Неведомский, М. А. Бобров та ін. "Вертикально-излучающие лазеры спектрального диапазона 1.55 мкм, изготовленные по технологии спекания гетероструктур, выращенных методом молекулярно-пучковой эпитаксии из твердотельных источников". Физика и техника полупроводников 54, № 10 (2020): 1088. http://dx.doi.org/10.21883/ftp.2020.10.49947.9463.
Texte intégralGE, CHEN, KUI-JUAN JIN, HUI-BIN LU, and CONG WANG. "NOVEL PROPERTIES IN OXIDE HETEROSTRUCTURES." Modern Physics Letters B 23, no. 09 (2009): 1129–45. http://dx.doi.org/10.1142/s0217984909019594.
Texte intégralTrenczek-Zajac, Anita, Joanna Banas-Gac, and Marta Radecka. "TiO2@Cu2O n-n Type Heterostructures for Photochemistry." Materials 14, no. 13 (2021): 3725. http://dx.doi.org/10.3390/ma14133725.
Texte intégralDorovskikh, Svetlana I., Darya D. Klyamer, Evgeny A. Maksimovskiy, et al. "Heterostructures Based on Cobalt Phthalocyanine Films Decorated with Gold Nanoparticles for the Detection of Low Concentrations of Ammonia and Nitric Oxide." Biosensors 12, no. 7 (2022): 476. http://dx.doi.org/10.3390/bios12070476.
Texte intégralLi, Junjiao, Jun Xie, Dongchen Li, et al. "An Interface Heterostructure of NiO and CeO2 for Using Electrolytes of Low-Temperature Solid Oxide Fuel Cells." Nanomaterials 11, no. 8 (2021): 2004. http://dx.doi.org/10.3390/nano11082004.
Texte intégralSlepchenkov, Michael M., Dmitry A. Kolosov, Igor S. Nefedov, and Olga E. Glukhova. "Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study." Materials 15, no. 24 (2022): 8921. http://dx.doi.org/10.3390/ma15248921.
Texte intégralSlepchenkov, Michael M., Dmitry A. Kolosov, and Olga E. Glukhova. "First-Principles Study of Electronic and Optical Properties of Tri-Layered van der Waals Heterostructures Based on Blue Phosphorus and Zinc Oxide." Journal of Composites Science 6, no. 6 (2022): 163. http://dx.doi.org/10.3390/jcs6060163.
Texte intégralJIN, YU-LING, KUI-JUAN JIN, CHEN GE, HUI-BIN LU, and GUO-ZHEN YANG. "RESISTIVE SWITCHING PHENOMENA IN COMPLEX OXIDE HETEROSTRUCTURES." Modern Physics Letters B 27, no. 29 (2013): 1330021. http://dx.doi.org/10.1142/s0217984913300214.
Texte intégralGu, Youdi, Qian Wang, Weijin Hu, et al. "An overview of SrRuO3-based heterostructures for spintronic and topological phenomena." Journal of Physics D: Applied Physics 55, no. 23 (2022): 233001. http://dx.doi.org/10.1088/1361-6463/ac4fd3.
Texte intégralKarsthof, Robert, Holger von Wenckstern, Jesús Zúñiga-Pérez, Christiane Deparis, and Marius Grundmann. "Nickel Oxide–Based Heterostructures with Large Band Offsets." physica status solidi (b) 257, no. 7 (2019): 1900639. http://dx.doi.org/10.1002/pssb.201900639.
Texte intégralBerman, Diana, Yuchen Sha, and Elena V. Shevchenko. "Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic Heterostructures Synthesized via Two-Step Polymer Infiltration." Molecules 26, no. 3 (2021): 679. http://dx.doi.org/10.3390/molecules26030679.
Texte intégralNobile, Concetta, and Pantaleo Davide Cozzoli. "Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials." Nanomaterials 12, no. 10 (2022): 1729. http://dx.doi.org/10.3390/nano12101729.
Texte intégralTulina, N. A., V. V. Sirotkin, I. Yu Borisenko, and A. A. Ivanov. "Simulating resistive switching in heterostructures based on oxide compounds." Bulletin of the Russian Academy of Sciences: Physics 77, no. 3 (2013): 265–67. http://dx.doi.org/10.3103/s1062873813030362.
Texte intégralSemenov, Andrey R., Tatiana A. Kholomina, Vladimir G. Litvinov, and Alexander V. Ermachikhin. "Investigation of the properties of zinc oxide based heterostructures." Physics of Complex Systems 2, no. 4 (2021): 172–79. http://dx.doi.org/10.33910/2687-153x-2021-2-4-172-179.
Texte intégralChen, Y. Z., E. Stamate, N. Pryds, J. R. Sun, B. G. Shen, and S. Linderoth. "Charge modulated interfacial conductivity in SrTiO3-based oxide heterostructures." Applied Physics Letters 98, no. 23 (2011): 232105. http://dx.doi.org/10.1063/1.3598391.
Texte intégralSanna, Simone, Vincenzo Esposito, Mogens Christensen, and Nini Pryds. "High ionic conductivity in confined bismuth oxide-based heterostructures." APL Materials 4, no. 12 (2016): 121101. http://dx.doi.org/10.1063/1.4971801.
Texte intégralZappa, Dario, Vardan Galstyan, Navpreet Kaur, Hashitha M. M. Munasinghe Arachchige, Orhan Sisman, and Elisabetta Comini. "“Metal oxide -based heterostructures for gas sensors”- A review." Analytica Chimica Acta 1039 (December 2018): 1–23. http://dx.doi.org/10.1016/j.aca.2018.09.020.
Texte intégralSchaper, Nicholas, Dheyaa Alameri, Yoosuk Kim, et al. "Controlled Fabrication of Quality ZnO NWs/CNTs and ZnO NWs/Gr Heterostructures via Direct Two-Step CVD Method." Nanomaterials 11, no. 7 (2021): 1836. http://dx.doi.org/10.3390/nano11071836.
Texte intégralZhang, Raymond, Timofey Averianov та Ekaterina Pomerantseva. "Assembly of Two-Dimensional δ-V2O5-Ti3C2Tx Heterostructure Electrodes for Li-Ion Batteries". ECS Meeting Abstracts MA2022-02, № 2 (2022): 150. http://dx.doi.org/10.1149/ma2022-022150mtgabs.
Texte intégralHan, Jinkyu, Lei Wang, and Stanislaus S. Wong. "Morphology and dopant-dependent optical characteristics of novel composite 1D and 3D-based heterostructures of CdSe nanocrystals and LaPO4:Re (Re = Eu, Ce, Tb) metal phosphate nanowires." RSC Adv. 4, no. 66 (2014): 34963–80. http://dx.doi.org/10.1039/c4ra05933f.
Texte intégralPrakash, Varnika, Raul D. Rodriguez, Ammar Al-Hamry, et al. "Flexible plasmonic graphene oxide/heterostructures for dual-channel detection." Analyst 144, no. 10 (2019): 3297–306. http://dx.doi.org/10.1039/c8an02495b.
Texte intégralLi, Yuan, and Nitin Chopra. "Fabrication of thermally-conductive carbon nanotubes-copper oxide heterostructures." MRS Proceedings 1543 (2013): 119–24. http://dx.doi.org/10.1557/opl.2013.673.
Texte intégralQuintela, Camilo X., Kyung Song, Ding-Fu Shao, et al. "Epitaxial antiperovskite/perovskite heterostructures for materials design." Science Advances 6, no. 30 (2020): eaba4017. http://dx.doi.org/10.1126/sciadv.aba4017.
Texte intégralСтрюков, Д. В., В. М. Мухортов, Ю. И. Головко та С. В. Бирюков. "Особенности сегнетоэлектрического состояния в двухслойных гетероструктурах на основе титаната бария-стронция". Физика твердого тела 60, № 1 (2018): 113. http://dx.doi.org/10.21883/ftt.2018.01.45297.186.
Texte intégralFukatsu, S., Y. Kishimoto, Y. Ishikawa, and N. Shibata. "Si(Ge)/oxide-based heterostructures and their applications to optoelectronics." Applied Surface Science 159-160 (June 2000): 472–80. http://dx.doi.org/10.1016/s0169-4332(00)00153-7.
Texte intégralChen, Yunzhong, Nini Pryds, Josée E. Kleibeuker, et al. "Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures." Nano Letters 11, no. 9 (2011): 3774–78. http://dx.doi.org/10.1021/nl201821j.
Texte intégralJaiswal, A. K., R. Schneider, M. Le Tacon, and D. Fuchs. "Magnetotransport of SrIrO3-based heterostructures." AIP Advances 12, no. 3 (2022): 035120. http://dx.doi.org/10.1063/9.0000325.
Texte intégralZhang, Lijia, Zhongbin Luo, Lingshan Su, and Dianping Tang. "A surface plasmon resonance enhanced photoelectrochemical immunoassay based on perovskite metal oxide@gold nanoparticle heterostructures." Analyst 144, no. 19 (2019): 5717–23. http://dx.doi.org/10.1039/c9an01395d.
Texte intégralBu, Fan-Xing, Li Xu, Wei Zhang, et al. "A versatile strategy to construct multifunctional metal oxide@cyanometallate-based coordination polymer heterostructures." Chemical Communications 51, no. 28 (2015): 6198–201. http://dx.doi.org/10.1039/c4cc10097b.
Texte intégralAbadi, M. Tommy Hasan, Nurma Ari Sofa, Siti Zulaikah, and Nandang Mufti. "Influence of Au Sputtered in ZnO/Au/PANI Heterostructures Film for Photoelectrochemical Cells." Materials Science Forum 1028 (April 2021): 117–26. http://dx.doi.org/10.4028/www.scientific.net/msf.1028.117.
Texte intégralLichtensteiger, Céline. "InteractiveXRDFit: a new tool to simulate and fit X-ray diffractograms of oxide thin films and heterostructures." Journal of Applied Crystallography 51, no. 6 (2018): 1745–51. http://dx.doi.org/10.1107/s1600576718012840.
Texte intégralPloog, Klaus H. "Molecular Beam Epitaxy of Materials Interfaces with Atomic Precision." Физика и техника полупроводников 52, no. 5 (2018): 513. http://dx.doi.org/10.21883/ftp.2018.05.45857.46.
Texte intégralVengalis, B., K. Šliužienė, and V. Lisauskas. "Growth and Investigation of Oxide Heterostructures Based on Half-Metallic Fe3O4." Acta Physica Polonica A 105, no. 6 (2004): 659–65. http://dx.doi.org/10.12693/aphyspola.105.659.
Texte intégralWang, Kai, He Zheng, Guangyu Wen, et al. "Modulating domain structures in Al 2 O 3 -based oxide heterostructures." Materials Research Bulletin 106 (October 2018): 465–70. http://dx.doi.org/10.1016/j.materresbull.2018.06.042.
Texte intégralZhang, Yiteng, Yanqiang Cao, Haihua Hu, et al. "Flexible Metal–Insulator Transitions Based on van der Waals Oxide Heterostructures." ACS Applied Materials & Interfaces 11, no. 8 (2019): 8284–90. http://dx.doi.org/10.1021/acsami.8b22664.
Texte intégralLi, Jingyu, Yuanxu Wang, Guangbiao Zhang, et al. "Seeking large Seebeck effects in LaX(X = Mn and Co)O3/SrTiO3 superlattices by exploiting high spin-polarized effects." Physical Chemistry Chemical Physics 21, no. 27 (2019): 14973–83. http://dx.doi.org/10.1039/c9cp02486g.
Texte intégralEom, C. B., R. J. Cava, Julia M. Phillips, and D. J. Werder. "Epitaxial thin films and heterostructures of a copper‐oxide‐based isotropic metallic oxide (La8−xSrxCu8O20)." Journal of Applied Physics 77, no. 10 (1995): 5449–51. http://dx.doi.org/10.1063/1.359240.
Texte intégralZharkov, D. K., A. V. Leontyev, D. P. Pavlov, and R. F. Mamin. "Features of the Photoinduced Conductivity of Heterostructures Based on Complex Lanthanum Oxide and Strontium Oxide." Bulletin of the Russian Academy of Sciences: Physics 83, no. 12 (2019): 1473–74. http://dx.doi.org/10.3103/s1062873819120323.
Texte intégralWang, Yaqin, Wu Tang, Jianli Cheng, Safdar Nazir, and Kesong Yang. "High-mobility two-dimensional electron gas in SrGeO3- and BaSnO3-based perovskite oxide heterostructures: an ab initio study." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31924–29. http://dx.doi.org/10.1039/c6cp05572a.
Texte intégralKim, Ji Eun, Van Tu Vu, Thi Thanh Huong Vu, et al. "A Non-Volatile Memory Based on NbOx/NbSe2 Van der Waals Heterostructures." Applied Sciences 10, no. 21 (2020): 7598. http://dx.doi.org/10.3390/app10217598.
Texte intégralSirotkin, V. V., N. A. Tulina, A. N. Rossolenko, and I. Yu Borisenko. "Numerical simulation of resistive switching in heterostructures based on anisotropic oxide compounds." Bulletin of the Russian Academy of Sciences: Physics 80, no. 5 (2016): 497–99. http://dx.doi.org/10.3103/s1062873816050191.
Texte intégralBuonsanti, Raffaella, Etienne Snoeck, Cinzia Giannini, et al. "Colloidal semiconductor/magnetic heterostructures based on iron-oxide-functionalized brookite TiO2 nanorods." Physical Chemistry Chemical Physics 11, no. 19 (2009): 3680. http://dx.doi.org/10.1039/b821964h.
Texte intégralDurand, O., D. Rogers, F. Hosseini Teherani, M. Andrieux, and M. Modreanu. "Studies of oxide-based thin-layered heterostructures by X-ray scattering methods." Thin Solid Films 515, no. 16 (2007): 6360–67. http://dx.doi.org/10.1016/j.tsf.2006.11.111.
Texte intégralWang, Miao, Xiaojuan Lian, Yiming Pan, et al. "A selector device based on graphene–oxide heterostructures for memristor crossbar applications." Applied Physics A 120, no. 2 (2015): 403–7. http://dx.doi.org/10.1007/s00339-015-9208-y.
Texte intégralDey, Urmimala, Swastika Chatterjee, and A. Taraphder. "Antisite-disorder engineering in La-based oxide heterostructures via oxygen vacancy control." Physical Chemistry Chemical Physics 20, no. 26 (2018): 17871–80. http://dx.doi.org/10.1039/c8cp01500g.
Texte intégralShang, Jie, Gang Liu, Huali Yang, et al. "Thermally Stable Transparent Resistive Random Access Memory based on All-Oxide Heterostructures." Advanced Functional Materials 24, no. 15 (2013): 2171–79. http://dx.doi.org/10.1002/adfm.201303274.
Texte intégralYu, Sujing, Dongzhi Zhang, Yu Zhang, et al. "Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures." Nanoscale 12, no. 36 (2020): 18815–25. http://dx.doi.org/10.1039/d0nr05530a.
Texte intégral