Littérature scientifique sur le sujet « Particle accelerator simulation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Particle accelerator simulation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Particle accelerator simulation"
Barač, Rocco, et Toni Šćulac. « Development of a simple algorithm for linear accelerator construction and simulation ». St open 4 (31 août 2023) : 1–15. http://dx.doi.org/10.48188/so.4.13.
Texte intégralMartinez de la Ossa, A., R. W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp et al. « Hybrid LWFA–PWFA staging as a beam energy and brightness transformer : conceptual design and simulations ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2151 (24 juin 2019) : 20180175. http://dx.doi.org/10.1098/rsta.2018.0175.
Texte intégralIwamoto, Masanori, Takanobu Amano, Yosuke Matsumoto, Shuichi Matsukiyo et Masahiro Hoshino. « Particle Acceleration by Pickup Process Upstream of Relativistic Shocks ». Astrophysical Journal 924, no 2 (1 janvier 2022) : 108. http://dx.doi.org/10.3847/1538-4357/ac38aa.
Texte intégralShishlo, Andrei, Sarah Cousineau, Jeffrey Holmes et Timofey Gorlov. « The Particle Accelerator Simulation Code PyORBIT ». Procedia Computer Science 51 (2015) : 1272–81. http://dx.doi.org/10.1016/j.procs.2015.05.312.
Texte intégralTimalsina, R. « Structural Energy Distribution and Particle Phase Stability Study of Longitudinal Dynamics of a Simple Linear Proton Accelerator ». Journal of Nepal Physical Society 7, no 1 (7 mai 2021) : 66–72. http://dx.doi.org/10.3126/jnphyssoc.v7i1.36978.
Texte intégralSullivan, Kelley D., Antara Sen et M. C. Sullivan. « Investigating the magnetic field outside small accelerator magnet analogs via experiment, simulation, and theory ». American Journal of Physics 91, no 6 (1 juin 2023) : 432. http://dx.doi.org/10.1119/5.0068701.
Texte intégralPlanche, Thomas, et Paul M. Jung. « Symplectic and self-consistent algorithms for particle accelerator simulation ». International Journal of Modern Physics A 34, no 36 (30 décembre 2019) : 1942027. http://dx.doi.org/10.1142/s0217751x19420272.
Texte intégralGe, Lixin, Zenghai Li, Cho-Kuen Ng et Liling Xiao. « High Performance Computing in Parallel Electromagnetics Simulation Code suite ACE3P ». Applied Computational Electromagnetics Society 35, no 11 (4 février 2021) : 1332–33. http://dx.doi.org/10.47037/2020.aces.j.351135.
Texte intégralFuchs, M., G. Andonian, O. Apsimon, M. Büscher, M. C. Downer, D. Filippetto, A. Lehrach et al. « Plasma-based particle sources ». Journal of Instrumentation 19, no 01 (1 janvier 2024) : T01004. http://dx.doi.org/10.1088/1748-0221/19/01/t01004.
Texte intégralNiedermayer, Uwe, A. Adelmann, S. Bettoni, M. Calvi, M. Dehler, E. Ferrari, F. Frei et al. « Challenges in simulating beam dynamics of dielectric laser acceleration ». International Journal of Modern Physics A 34, no 36 (26 novembre 2019) : 1942031. http://dx.doi.org/10.1142/s0217751x19420314.
Texte intégralThèses sur le sujet "Particle accelerator simulation"
Goutierre, Emmanuel. « Machine learning-based particle accelerator modeling ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG106.
Texte intégralParticle accelerators rely on high-precision simulations to optimize beam dynamics. These simulations are computationally expensive, making real-time analysis impractical. This thesis seeks to address this limitation by exploring the potential of machine learning to develop surrogate models for particle accelerator simulations. The focus is on ThomX, a compact Compton source, where two surrogate models are introduced: LinacNet and Implicit Neural ODE (INODE). These models are trained on a comprehensive database developed in this thesis that captures a wide range of operating conditions to ensure robustness and generalizability. LinacNet provides a comprehensive representation of the particle cloud by predicting all coordinates of the macro-particles, rather than focusing solely on beam observables. This detailed modeling, coupled with a sequential approach that accounts for cumulative particle dynamics throughout the accelerator, ensures consistency and enhances model interpretability. INODE, based on the Neural Ordinary Differential Equation (NODE) framework, seeks to learn the implicit governing dynamics of particle systems without the need for explicit ODE solving during training. Unlike traditional NODEs, which struggle with discontinuities, INODE is theoretically designed to handle them more effectively. Together, LinacNet and INODE serve as surrogate models for ThomX, demonstrating their ability to approximate particle dynamics. This work lays the groundwork for developing and improving the reliability of machine learning-based models in accelerator physics
Rosencranz, Daniela Necsoiu. « Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator ». Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3077/.
Texte intégralFeister, Scott. « Efficient Acceleration of Electrons by an Intense Laser and its Reflection ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461225902.
Texte intégralLi, Lulu Ph D. Massachusetts Institute of Technology. « Acceleration methods for Monte Carlo particle transport simulations ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112521.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 166-175).
Performing nuclear reactor core physics analysis is a crucial step in the process of both designing and understanding nuclear power reactors. Advancements in the nuclear industry demand more accurate and detailed results from reactor analysis. Monte Carlo (MC) eigenvalue neutron transport methods are uniquely qualified to provide these results, due to their accurate treatment of space, angle, and energy dependencies of neutron distributions. Monte Carlo eigenvalue simulations are, however, challenging, because they must resolve the fission source distribution and accumulate sufficient tally statistics, resulting in prohibitive run times. This thesis proposes the Low Order Operator (LOO) acceleration method to reduce the run time challenge, and provides analyses to support its use for full-scale reactor simulations. LOO is implemented in the continuous energy Monte Carlo code, OpenMC, and tested in 2D PWR benchmarks. The Low Order Operator (LOO) acceleration method is a deterministic transport method based on the Method of Characteristics. Similar to Coarse Mesh Finite Difference (CMFD), the other acceleration method evaluated in this thesis, LOO parameters are constructed from Monte Carlo tallies. The solutions to the LOO equations are then used to update Monte Carlo fission sources. This thesis deploys independent simulations to rigorously assess LOO, CMFD, and unaccelerated Monte Carlo, simulating up to a quarter of a trillion neutron histories for each simulation. Analysis and performance models are developed to address two aspects of the Monte Carlo run time challenge. First, this thesis demonstrates that acceleration methods can reduce the vast number of neutron histories required to converge the fission source distribution before tallies can be accumulated. Second, the slow convergence of tally statistics is improved with the acceleration methods for the earlier active cycles. A theoretical model is developed to explain the observed behaviors and predict convergence rates. Finally, numerical results and theoretical models shed light on the selection of optimal simulation parameters such that a desired statistical uncertainty can be achieved with minimum neutron histories. This thesis demonstrates that the conventional wisdom (e.g., maximizing the number of cycles rather than the number of neutrons per cycle) in performing unaccelerated MC simulations can be improved simply by using more optimal parameters. LOO acceleration provides reduction of a factor of at least 2.2 in neutron histories, compared to the unaccelerated Monte Carlo scheme, and the CPU time and memory overhead associated with LOO are small.
by Lulu Li.
Ph. D.
Lowe, Robert Edward. « Simulation of electron acceleration at collisionless plasma shocks ». Thesis, Queen Mary, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246324.
Texte intégralDay, Hugo Alistair. « Measurements and simulations of impedance reduction techniques in particle accelerators ». Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/measurements-and-simulations-of-impedance-reduction-techniques-in-particle-accelerators(35666138-5941-4c8b-95b3-7beeb3bdfb24).html.
Texte intégralGuyot, Julien. « Particle acceleration in colliding laser-produced plasmas ». Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS616.
Texte intégralEnergetic charged particles are ubiquitous in the Universe and are accelerated by galactic and extragalactic sources. Understanding the origin of these "cosmic rays" is crucial in astrophysics and within the framework of high-energy-density laboratory astrophysics we have developed a novel platform on the LULI laser facilities to study particle acceleration in the laboratory. In the experiments, the collision of two laser-produced counter-propagating plasmas generates a distribution of non-thermal particles with energies up to 1 MeV. The aim of this work is to provide a theoretical framework to understand their origin. Magneto-hydrodynamic simulations with test particles show that the plasma collision leads to the growth of bubble and spike structures driven by the magnetic Rayleigh-Taylor instability and the generation of strong electric fields. We find that particles are accelerated to energies up to a few hundred of keV in less than 20 ns, by repeated interactions with these growing magnetic Rayleigh-Taylor perturbations. The simulations and a stochastic acceleration model recover very well the experimentally measured non-thermal energy spectrum. In conclusion, we have identified in the laboratory a new particle acceleration mechanism that relies on the growth of the magnetic Rayleigh-Taylor instability to stochastically energize particles. This instability is very common in astrophysical plasmas, with examples including supernovae remnants and coronal mass ejections, and we suggest that it may contribute to the energization of particles in these systems
Messmer, Peter. « Observations and simulations of particle acceleration in solar flares / ». Aachen : Shaker, 2001. http://www.gbv.de/dms/goettingen/338805397.pdf.
Texte intégralGuo, Fan. « Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles : Numerical Simulations with Application to Heliospheric Physics ». Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/255156.
Texte intégralLagergren, Mattias. « GPU accelerated SPH simulation of fluids for VFX ». Thesis, Linköping University, Visual Information Technology and Applications (VITA), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57320.
Texte intégralLivres sur le sujet "Particle accelerator simulation"
Workshop on Simulating Accelerator Radiation Environments (3rd 1997 KEK). Proceedings of the Third Workshop on Simulating Accelerator Radiation Environments (SARE3) : May 7-9, 1997, KEK, Tsukuba, Japan. Tsukubi-shi, Ibaraki-ken, Japan : High Energy Accelerator Research Organization, 1997.
Trouver le texte intégralM, Berz, et Makino Kyoko, dir. Computational accelerator physics 2002 : Proceedings of the Seventh International Conference on Computational Accelerator Physics : Michigan State University, East Lansing, Michigan, USA, 15-18 October, 2002. Bristol : Institute of Pub., 2005.
Trouver le texte intégralEllison, Donald C. Final technical report for acceleration of positrons in supernova shocks : Period, April 15, 1989 - April 15, 1992. Raleigh, N.C : North Carolina State University, 1992.
Trouver le texte intégral(Editor), M. Berz, et K. Makino (Editor), dir. Computational Accelerator Physics 2003 : Proceedings of the Seventh International Conference on Computational Accelerator Physics, Michigan, USA, 15-18 ... (Institute of Physics Conference Series). Taylor & Francis, 2005.
Trouver le texte intégralChapitres de livres sur le sujet "Particle accelerator simulation"
Méot, François. « Classical Cyclotron ». Dans Particle Acceleration and Detection, 55–132. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_3.
Texte intégralMéot, François. « Synchrocyclotron ». Dans Particle Acceleration and Detection, 225–36. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_7.
Texte intégralMéot, François. « Betatron ». Dans Particle Acceleration and Detection, 187–205. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_5.
Texte intégralRugama, Y., J. L. Munoz-Cobo et T. E. Valentine. « Noise Method for Monitoring the Subcriticality in Accelerator-Driven Systems ». Dans Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 887–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_142.
Texte intégralCoeck, M., Th Aoust, F. Vermeersch et A. Abderrahim. « Shielding Assessment of the MYRRHA Accelerator-Driven System Using the MCNP Code ». Dans Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 925–30. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_148.
Texte intégralKadi, Y. « Application of the EA-MC Code Package to the Design of Accelerator-Driven Systems ». Dans Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 1015–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_163.
Texte intégralValentine, T., Y. Rugama, J. L. Muñoz-Cobo et R. Perez. « Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems ». Dans Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 1081–84. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_174.
Texte intégralPolanski, A., V. Barashenkov, I. Puzynin, I. Rakhno et A. Sissakian. « Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems ». Dans Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 803–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_128.
Texte intégralAlbers, D., F. Cremers, I. Eggers, M. Todorovic et R. Schmidt. « Energy Spectra and Dose Distributions of a Medical Linear Electron Accelerator Simulated with BEAM/EGS4 and MCNP ». Dans Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 323–27. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_51.
Texte intégralMéot, François. « FFAG, Scaling ». Dans Particle Acceleration and Detection, 385–444. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59979-8_10.
Texte intégralActes de conférences sur le sujet "Particle accelerator simulation"
Barlow, Roger John, Adriana Bungau et Roger Michael Jones. « Collimator Wakefields : formulae and simulation ». Dans 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440440.
Texte intégralGolge, S., C. Hyde et A. Freyberger. « Simulation of a cw positron source for cebaf ». Dans 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440692.
Texte intégralBourianoff, George. « Accelerator simulation activities at the SSCL ». Dans Stability of particle motion in storage rings. AIP, 1992. http://dx.doi.org/10.1063/1.45105.
Texte intégralBlaskiewicz, M. « A multipurpose coherent instability simulation code ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440535.
Texte intégralZhukov, A., et A. Assadi. « Beam loss simulation of SNS LINAC ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4439971.
Texte intégralJones, F. W., W. Herr et T. Pieloni. « Parallel beam-beam simulation incorporating multiple bunches and multiple interaction regions ». Dans 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440383.
Texte intégralRoberts, Thomas J., et Daniel M. Kaplan. « G4beamline simulation program for matter-dominated beamlines ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440461.
Texte intégralWangler, T. P., R. W. Garnett, J. Qiang, R. Ryne, K. R. Crandall, J. H. Billen, V. N. Aseev et al. « The riapmtq/impact beam-dynamics simulation package ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440507.
Texte intégralKoichi Kan, Takafumi Kondoh, Jinfeng Yang et Yoichi Yoshida. « Simulation study on attosecond electro bunch generation ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440579.
Texte intégralYang, X., A. I. Drozhdin et W. Pellico. « Transition crossing simulation at the fermilab Booster ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440882.
Texte intégralRapports d'organisations sur le sujet "Particle accelerator simulation"
Tourtellott, John. INTEGRATED WORKFLOW MANAGEMENT FOR PARTICLE ACCELERATOR SIMULATION. Office of Scientific and Technical Information (OSTI), juillet 2020. http://dx.doi.org/10.2172/1638224.
Texte intégralTourtellot, John. Integrated Workflow Management for Particle Accelerator Simulation SBIR Phase II. Office of Scientific and Technical Information (OSTI), décembre 2022. http://dx.doi.org/10.2172/1906113.
Texte intégralPullammanappallil, Pratap, Haim Kalman et Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, janvier 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Texte intégralKurennoy, Sergey, et R. Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), mars 2021. http://dx.doi.org/10.2172/1773311.
Texte intégralKurennoy, Sergey, et Robert Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), mai 2022. http://dx.doi.org/10.2172/1870624.
Texte intégralKurennoy, Sergey, et R. Ryne. Parallel Simulation of Beam Dynamics in Particle Accelerators. Office of Scientific and Technical Information (OSTI), mars 2023. http://dx.doi.org/10.2172/1968188.
Texte intégralMaxon, William. A Numerical Simulation of a Single Shock-Accelerated Particle. Office of Scientific and Technical Information (OSTI), juillet 2020. http://dx.doi.org/10.2172/1643905.
Texte intégralGuo, Fan, et Xiaohang Chen. Particle Acceleration at Parallel Shocks : a fully kinetic simulation. Office of Scientific and Technical Information (OSTI), août 2022. http://dx.doi.org/10.2172/1881801.
Texte intégralKrall, J., V. Serlin, M. Friedman et Y. Y. Lau. Simulation Studies of Particle Acceleration Powered by Modulated Intense Relativistic Electron Beams. Fort Belvoir, VA : Defense Technical Information Center, mars 1989. http://dx.doi.org/10.21236/ada206348.
Texte intégralGuo, Fan. First Principles Kinetic Simulations of Relativistic Collisionless Shocks and Their Particle Acceleration. Office of Scientific and Technical Information (OSTI), août 2020. http://dx.doi.org/10.2172/1645065.
Texte intégral