Littérature scientifique sur le sujet « Particle sensor »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Particle sensor ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Particle sensor"
Zhang, Siqi, Yucai Xie, Lianfeng Zhang, Yuwei Zhang, Shuyao Zhang, Chenzhao Bai et Wei Li. « Investigation of the Effect of Debris Position on the Detection Stability of a Magnetic Plug Sensor Based on Alternating Current Bridge ». Sensors 24, no 1 (21 décembre 2023) : 55. http://dx.doi.org/10.3390/s24010055.
Texte intégralFardi, B., B. MacGibbon, S. Tripathi et F. Moghadam. « Feasibility of an In-Situ Particle Monitor on a Tungsten LPCVD Reactor ». Journal of the IEST 39, no 3 (31 mai 1996) : 25–30. http://dx.doi.org/10.17764/jiet.2.39.3.f109749056q17677.
Texte intégralHuang, Ching-Hsuan, Jiayang He, Elena Austin, Edmund Seto et Igor Novosselov. « Assessing the value of complex refractive index and particle density for calibration of low-cost particle matter sensor for size-resolved particle count and PM2.5 measurements ». PLOS ONE 16, no 11 (11 novembre 2021) : e0259745. http://dx.doi.org/10.1371/journal.pone.0259745.
Texte intégralHong, Sung-Ho. « Numerical Approach and Verification Method for Improving the Sensitivity of Ferrous Particle Sensors with a Permanent Magnet ». Sensors 23, no 12 (6 juin 2023) : 5381. http://dx.doi.org/10.3390/s23125381.
Texte intégralHagan, David H., et Jesse H. Kroll. « Assessing the accuracy of low-cost optical particle sensors using a physics-based approach ». Atmospheric Measurement Techniques 13, no 11 (26 novembre 2020) : 6343–55. http://dx.doi.org/10.5194/amt-13-6343-2020.
Texte intégralHong, Sung-Ho. « Numerical Analysis for Appropriate Positioning of Ferrous Wear Debris Sensors with Permanent Magnet in Gearbox Systems ». Sensors 24, no 3 (26 janvier 2024) : 810. http://dx.doi.org/10.3390/s24030810.
Texte intégralKittimanapun, Kritsada, Natthawut Laojamnongwong, Jetnipit Kaewjai, Chinorat Kobdaj et Wanchaloem Poonsawat. « Commissioning of Pixel Sensor Telescope for Monolithic Active Pixel Sensor Characterization ». Journal of Physics : Conference Series 2653, no 1 (1 décembre 2023) : 012029. http://dx.doi.org/10.1088/1742-6596/2653/1/012029.
Texte intégralYuan, Changrong, Zhongsheng Sun et Xiaoning Li. « Mechanism and Modeling of Contaminant Accumulation on Hot-Film Air Flow Sensor ». Mathematical Problems in Engineering 2019 (19 février 2019) : 1–15. http://dx.doi.org/10.1155/2019/6246259.
Texte intégralSantos da Silva, Safire Torres, Nikola Jerance et Harijaona Lalao Rakotoarison. « Simulating metallic contamination in permanent magnets used in magnetic sensors ». COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 38, no 5 (2 septembre 2019) : 1683–95. http://dx.doi.org/10.1108/compel-12-2018-0515.
Texte intégralFan, Bin, Lianfu Wang, Yong Liu, Peng Zhang et Song Feng. « Simulation and Optimization Design of Inductive Wear Particle Sensor ». Sensors 23, no 10 (19 mai 2023) : 4890. http://dx.doi.org/10.3390/s23104890.
Texte intégralThèses sur le sujet "Particle sensor"
Ing, Garrick. « Distributed particle filters for object tracking in sensor networks ». Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98971.
Texte intégralLatiff, Nurul Mu'azzah Abdul. « Particle swarm optimisation for clustering in wireless sensor networks ». Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489298.
Texte intégralIhler, Alexander T. (Alexander Thomas) 1976. « Inference in sensor networks : graphical models and particle methods ». Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33206.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 175-183).
Sensor networks have quickly risen in importance over the last several years to become an active field of research, full of difficult problems and applications. At the same time, graphical models have shown themselves to be an extremely useful formalism for describing the underlying statistical structure of problems for sensor networks. In part, this is due to a number of efficient methods for solving inference problems defined on graphical models, but even more important is the fact that many of these methods (such as belief propagation) can be interpreted as a set of message passing operations, for which it is not difficult to describe a simple, distributed architecture in which each sensor performs local processing and fusion of information, and passes messages locally among neighboring sensors. At the same time, many of the tasks which are most important in sensor networks are characterized by such features as complex uncertainty and nonlinear observation processes. Particle filtering is one common technique for dealing with inference under these conditions in certain types of sequential problems, such as tracking of mobile objects.
(cont.) However, many sensor network applications do not have the necessary structure to apply particle filtering, and even when they do there are subtleties which arise due to the nature of a distributed inference process performed on a system with limited resources (such as power, bandwidth, and so forth). This thesis explores how the ideas of graphical models and sample-based representations of uncertainty such as are used in particle filtering can be applied to problems defined for sensor networks, in which we must consider the impact of resource limitations on our algorithms. In particular, we explore three related themes. We begin by describing how sample-based representations can be applied to solve inference problems defined on general graphical models. Limited communications, the primary restriction in most practical sensor networks, means that the messages which are passed in the inference process must be approximated in some way. Our second theme explores the consequences of such message approximations, and leads to results with implications both for distributed systems and the use of belief propagation more generally.
(cont.) This naturally raises a third theme, investigating the optimal cost of representing sample-based estimates of uncertainty so as to minimize the communications required. Our analysis shows several interesting differences between this problem and traditional source coding methods. We also use the metrics for message errors to define lossy or approximate4 encoders, and provide an example encoder capable of balancing communication costs with a measure on inferential error. Finally, we put all of these three themes to work to solve a difficult and important task in sensor networks. The self-localization problem for sensors networks involves the estimation of all sensor positions given a set of relative inter-sensor measurements in the network. We describe this problem as a graphical model, illustrate the complex uncertainties involved in the estimation process, and present a method of finding for both estimates of the sensor positions and their remaining uncertainty using a sample-based message passing algorithm. This method is capable of incorporating arbitrary noise distributions, including outlier processes, and by applying our lossy encoding algorithm can be used even when communications is relatively limited.
(cont.) We conclude the thesis with a summary of the work and its contributions, and a description of some of the many problems which remain open within the field.
y Alexander T. Ihler.
Ph.D.
Zhang, Zheng. « RESISTIVE PULSE SENSORS FOR POLLEN PARTICLE MEASUREMENTS ». University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1145070142.
Texte intégralCampbell, Steven Conner. « DETERMINATION OF ACOUSTIC RADIATION EFFICIENCY VIA PARTICLE VELOCITY SENSOR WITH APPLICATIONS ». UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/133.
Texte intégralJagtiani, Ashish V. « DEVELOPMENT OF NOVEL MULTICHANNEL RESISTIVE PULSE SENSORS FOR MICRO-PARTICLE DETECTION AND DIFFERENTIATION ». University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1196284929.
Texte intégralKornilin, Dmitriy V. « Investigation of size, concentration and particle shapes in hydraulic systems using an in-line CMOS image matrix sensor ». Thesis, University of Chester, 2018. http://hdl.handle.net/10034/621947.
Texte intégralFan, Zihao, et Wei Zhao. « Network Coverage Optimization Strategy in Wireless Sensor Networks Based on Particle Swarm Optimization ». Thesis, Högskolan i Gävle, Akademin för teknik och miljö, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-9764.
Texte intégralBarboza, Kris Leo. « A Diagnostic Technique for Particle Characterization Using Laser Light Extinction ». Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52000.
Texte intégralMaster of Science
Kiring, Aroland. « Shrinkage based particle filters for tracking in wireless sensor networks with correlated sparse measurements ». Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20105/.
Texte intégralLivres sur le sujet "Particle sensor"
Hartmann, Frank. Evolution of Silicon Sensor Technology in Particle Physics. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64436-3.
Texte intégralHartmann, Frank. Evolution of Silicon Sensor Technology in Particle Physics. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-59720-6.
Texte intégralGoddard Space Flight Center. Engineering Procurement Office., dir. [Measuring electrically charged particle fluxes in space using a fiber optic loop sensor] : Final report. Greenbelt, MD : NASA Goddard Space Flight Center, Engineering Procurement Office, 1993.
Trouver le texte intégralA, Lindemulder Elizabeth, Jovaag Kari et United States. National Aeronautics and Space Administration., dir. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations. [Washington, DC : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralA, Lindemulder Elizabeth, Jovaag Kari et United States. National Aeronautics and Space Administration., dir. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations. [Washington, DC : National Aeronautics and Space Administration, 1995.
Trouver le texte intégral1922-, Soo S. L., dir. Instrumentation for fluid-particle flow. Norwich, N.Y : Noyes Publications, 1999.
Trouver le texte intégral(Firm), Knovel, dir. Instrumentation for fluid-particle flow. Park Ridge, N.J : Noyes Publications, 1999.
Trouver le texte intégralInc, ebrary, dir. Nanomedicine design of particles, sensors, motors, implants, robots, and devices. Boston, Mass : Artech House, 2009.
Trouver le texte intégralEvolution of Silicon Sensor Technology in Particle Physics. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b106762.
Texte intégralHartmann, Frank. Evolution of Silicon Sensor Technology in Particle Physics. Springer, 2010.
Trouver le texte intégralChapitres de livres sur le sujet "Particle sensor"
Eveland, Christopher K. « Particle Filtering with Evidential Reasoning ». Dans Sensor Based Intelligent Robots, 305–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45993-6_17.
Texte intégralJacobsen, Finn, et Hans-Elias de Bree. « The Microflown Particle Velocity Sensor ». Dans Handbook of Signal Processing in Acoustics, 1283–91. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-30441-0_68.
Texte intégralKreucher, Christopher M., Mark Morelande, Keith Kastella et Alfred O. Hero. « Joint Multi-Target Particle Filtering ». Dans Foundations and Applications of Sensor Management, 59–93. Boston, MA : Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-49819-5_4.
Texte intégralBecker, Aaron, Erik D. Demaine, Sándor P. Fekete, Golnaz Habibi et James McLurkin. « Reconfiguring Massive Particle Swarms with Limited, Global Control ». Dans Algorithms for Sensor Systems, 51–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45346-5_5.
Texte intégralMajumdar, Ivy, B. N. Chatterji et Avijit Kar. « Particle Swarm Optimisation Method for Texture Image Retrieval ». Dans Computational Intelligence in Sensor Networks, 405–26. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57277-1_17.
Texte intégralRistic, Branko. « Sensor Control for Random Set BasedParticle Filters ». Dans Particle Filters for Random Set Models, 85–119. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6316-0_5.
Texte intégralNarkhede, Parag, Shripad Deshpande et Rahee Walambe. « Sensor Data Cleaning Using Particle Swarm Optimization ». Dans Advances in Intelligent Systems and Computing, 182–91. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16681-6_18.
Texte intégralZhao, Mengying, Yuqi Ni, Tao Chao et Ke Fang. « An Inertia Weight Variable Particle Swarm Optimization Algorithm with Mutation ». Dans Sensor Networks and Signal Processing, 269–80. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4917-5_21.
Texte intégralGning, Amadou, Lyudmila Mihaylova, Fahed Abdallah et Branko Ristic. « Particle Filtering Combined with Interval Methods for Tracking Applications ». Dans Integrated Tracking, Classification, and Sensor Management, 43–74. Hoboken, New Jersey : John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch02.
Texte intégralHamster, A. W., M. J. van Duuren, G. C. S. Brons, J. Flokstra et H. Rogalla. « Squid Readout of Cryogenic Particle Detectors ». Dans Sensor Technology in the Netherlands : State of the Art, 281–85. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5010-1_45.
Texte intégralActes de conférences sur le sujet "Particle sensor"
Coates, M., et G. Ing. « Sensor network particle filters : motes as particles ». Dans 2005 Microwave Electronics : Measurements, Identification, Applications. IEEE, 2005. http://dx.doi.org/10.1109/ssp.2005.1628769.
Texte intégralZhou, Gui, Hang Wang et Minjun Peng. « Research on Optimization and Verification Method of Sensor Arrangement in the Chemical and Volume Control System ». Dans 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65466.
Texte intégralJohansen, Per, Michael M. Bech, Sune Dupont, Uffe N. Christiansen, Jens L. Sørensen, David N. Østedgaard-Munck et Anders Bentien. « An Experimental Study on High-Flowrate Ultrasonic Particle Monitoring in Oil Hydraulics ». Dans BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-89721.
Texte intégralPan, Feng, et Adam Huang. « Investigation and Measurement of Electrical Transport of Metal Particle Polymer Composites for the Development of MEMS-Based Corrosion Sensor ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12041.
Texte intégralKaikkonen, Ville A., Eero O. Molkoselkä, Harri J. Juttula et Anssi J. Mäkynen. « UAV Cloud Particle Sensor ». Dans 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2024. http://dx.doi.org/10.1109/i2mtc60896.2024.10560651.
Texte intégralYunpeng Li, Lingling Zhao et Mark Coates. « Particle flow auxiliary particle filter ». Dans 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015. http://dx.doi.org/10.1109/camsap.2015.7383760.
Texte intégralPokusevski, Z., I. G. Evans, T. A. York et T. Dyakowski. « A Novel Micro Capacitance Sensor for Studying Hydrodynamics of Particle Laden Flow ». Dans ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2043.
Texte intégralNamin, Parham H., et Mohammad A. Tinati. « Node localization using Particle Swarm Optimization ». Dans 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2011. http://dx.doi.org/10.1109/issnip.2011.6146558.
Texte intégralChen, Sen, Yitao Shen, Guiyan Qiang, Zheng Zheng, Zheyu Wang, Yin Hao et Ting Hu. « Simulation Study on the Influence of Multi-Magnetic Particles on Oil Sensor Signals ». Dans WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2826.
Texte intégralBoiarski, Anthony A. « Fiber Optic Particle Concentration Sensor ». Dans 29th Annual Technical Symposium. SPIE, 1986. http://dx.doi.org/10.1117/12.949775.
Texte intégralRapports d'organisations sur le sujet "Particle sensor"
SEA TECH INC CORVALLIS OR. Development of an Expendable Particle Sensor. Fort Belvoir, VA : Defense Technical Information Center, mai 1992. http://dx.doi.org/10.21236/ada251708.
Texte intégralBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA : Defense Technical Information Center, mai 1992. http://dx.doi.org/10.21236/ada251942.
Texte intégralBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA : Defense Technical Information Center, avril 1992. http://dx.doi.org/10.21236/ada252185.
Texte intégralBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA : Defense Technical Information Center, mai 1992. http://dx.doi.org/10.21236/ada252186.
Texte intégralBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA : Defense Technical Information Center, septembre 1992. http://dx.doi.org/10.21236/ada255702.
Texte intégralBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA : Defense Technical Information Center, février 1994. http://dx.doi.org/10.21236/ada303901.
Texte intégralSiegel, David A., Ivona Cetinic, Andrew F. Thompson, Norman B. Nelson, Michaela Sten, Melissa Omand, Shawnee Traylor et al. EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) North Atlantic sensor calibration and intercalibration documents. NASA STI Program and Woods Hole Oceanographic Institution, octobre 2023. http://dx.doi.org/10.1575/1912/66998.
Texte intégralChang, Enson, et R. Patton. Moored optical particle flux sensor (MOPAR). SBIR Phase II interim report. Office of Scientific and Technical Information (OSTI), juin 1993. http://dx.doi.org/10.2172/10200461.
Texte intégralDichter, Bronislaw K., Edward G. Mullen et Gary E. Galica. Space Particle Modeling, Measurements, and Effects : Compact Environmental Anomaly Sensor (CEASE) Proton Calibration. Fort Belvoir, VA : Defense Technical Information Center, février 2011. http://dx.doi.org/10.21236/ada536723.
Texte intégralBontha, Jagannadha R., Nancy G. Colton, Eric A. Daymo, T. D. Hylton, C. K. Bayne et T. H. May. Qualification of the Lasentec M600P Particle Size Analyzer and the Red Valve Model 1151 Pressure Sensor. Office of Scientific and Technical Information (OSTI), janvier 2000. http://dx.doi.org/10.2172/15002697.
Texte intégral