Littérature scientifique sur le sujet « PDEs in fluid mechanics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « PDEs in fluid mechanics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "PDEs in fluid mechanics"
BREIT, D., L. DIENING et S. SCHWARZACHER. « SOLENOIDAL LIPSCHITZ TRUNCATION FOR PARABOLIC PDEs ». Mathematical Models and Methods in Applied Sciences 23, no 14 (10 octobre 2013) : 2671–700. http://dx.doi.org/10.1142/s0218202513500437.
Texte intégralBilige, Sudao, et Yanqing Han. « Symmetry reduction and numerical solution of a nonlinear boundary value problem in fluid mechanics ». International Journal of Numerical Methods for Heat & ; Fluid Flow 28, no 3 (5 mars 2018) : 518–31. http://dx.doi.org/10.1108/hff-08-2016-0304.
Texte intégralSwapna, Y. « Applications of Partial Differential Equations in Fluid Physics ». Communications on Applied Nonlinear Analysis 31, no 1 (1 mars 2024) : 207–20. http://dx.doi.org/10.52783/cana.v31.396.
Texte intégralCao, Ruohan, Jin Su, Jinqian Feng et Qin Guo. « PhyICNet : Physics-informed interactive learning convolutional recurrent network for spatiotemporal dynamics ». Electronic Research Archive 32, no 12 (2024) : 6641–59. https://doi.org/10.3934/era.2024310.
Texte intégralBoyaval, Sébastien. « A class of symmetric-hyperbolic PDEs modelling fluid and solid continua ». ESAIM : Proceedings and Surveys 76 (2024) : 2–19. http://dx.doi.org/10.1051/proc/202476002.
Texte intégralDalir, Nemat. « Modified Decomposition Method with New Inverse Differential Operators for Solving Singular Nonlinear IVPs in First- and Second-Order PDEs Arising in Fluid Mechanics ». International Journal of Mathematics and Mathematical Sciences 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/793685.
Texte intégralMoaddy, K., S. Momani et I. Hashim. « The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics ». Computers & ; Mathematics with Applications 61, no 4 (février 2011) : 1209–16. http://dx.doi.org/10.1016/j.camwa.2010.12.072.
Texte intégralDa Prato, Giuseppe, et Vicenţiu D. Rădulescu. « Special issue on stochastic PDEs in fluid dynamics, particle physics and statistical mechanics ». Journal of Mathematical Analysis and Applications 384, no 1 (décembre 2011) : 1. http://dx.doi.org/10.1016/j.jmaa.2011.06.058.
Texte intégralSharma, Nishchal. « Deep Learning for Solving Partial Differential Equations : A Review of Literature ». International Journal for Research in Applied Science and Engineering Technology 12, no 10 (31 octobre 2024) : 588–91. http://dx.doi.org/10.22214/ijraset.2024.64623.
Texte intégralNaowarat, Surapol, Sayed Saifullah, Shabir Ahmad et Manuel De la Sen. « Periodic, Singular and Dark Solitons of a Generalized Geophysical KdV Equation by Using the Tanh-Coth Method ». Symmetry 15, no 1 (3 janvier 2023) : 135. http://dx.doi.org/10.3390/sym15010135.
Texte intégralThèses sur le sujet "PDEs in fluid mechanics"
Li, Siran. « Analysis of several non-linear PDEs in fluid mechanics and differential geometry ». Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:20866cbb-e5ab-4a6b-b9dc-88a247d15572.
Texte intégralBocchi, Edoardo. « Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids ». Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0279/document.
Texte intégralThis manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers
Barker, Tobias. « Uniqueness results for viscous incompressible fluids ». Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:db1b3bb9-a764-406d-a186-5482827d64e8.
Texte intégralKolumban, Jozsef. « Control issues for some fluid-solid models ». Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED012/document.
Texte intégralThe analysis of the behavior of a solid or several solids inside a fluid is a long-standing problem, that one can see described in many classical textbooks of hydrodynamics. Its study from a mathematical viewpoint has attracted a growing attention, in particular in the last 15 years. This research project aims at focusing on several aspect of this mathematical analysis, in particular on control and asymptotic issues. A simple model of fluid-solid evolution is that of a single rigid body surrounded by a perfect incompressible fluid. The fluid is modeled by the Euler equations, while the solid evolves according to Newton’s law, and is influenced by the fluid’s pressure on the boundary. The goal of this PhD thesis would consist in various studies in this branch, and in particular would investigate questions of controllability of this system, as well as limit models for thin solids converging to a curve. We would also like to study the Navier-Stokes/solid control system in a similar manner to the previously discussed controllability problem for the Euler/solid system. Another direction for this PhD project is to obtain a limit when the solid concentrates into a curve. Is it possible to obtain a simplified model of a thin object evolving in a perfect fluid, in the same way as simplified models were obtained for objects that are small in all directions? This could open the way to future investigations on derivation of liquid crystal flows as the limit of the system describing the interaction between the fluid and a net of solid tubes when the diameter of the tubes is converging to zero
Helluy, Philippe. « Simulation numérique des écoulements multiphasiques : de la théorie aux applications ». Habilitation à diriger des recherches, Université du Sud Toulon Var, 2005. http://tel.archives-ouvertes.fr/tel-00657839.
Texte intégralPerrin, Charlotte. « Modèles hétérogènes en mécanique des fluides : phénomènes de congestion, écoulements granulaires et mouvement collectif ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM023/document.
Texte intégralThis thesis is dedicated to the description and the mathematical analysis of heterogeneities and congestion phenomena in fluid mechanics models.A rigorous link between soft congestion models, based on the compressible Navier--Stokes equations which take into account short--range repulsive forces between elementary components; and hard congestion models which describe the transitions between free/compressible zones and congested/incompressible zones.We are interested then in the macroscopic modelling of mixtures composed solid particles immersed in a fluid.We provide a first mathematical answer to the question of the transition between the suspension regime dictated by hydrodynamical interactions and the granular regime dictated by the contacts between the solid particles.The method highlights the crucial role played by the memory effects in the granular regime.This approach enables also a new point of view concerning fluids with pressure-dependent viscosities.We finally deal with the microscopic and the macroscopic modelling of vehicular traffic.Original numerical schemes are proposed to robustly reproduce persistent traffic jams
Benjelloun, Saad. « Quelques problèmes d'écoulement multi-fluide : analyse mathématique, modélisation numérique et simulation ». Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764374.
Texte intégralNoisette, Florent. « Interactions avec la frontière pour des équations d’évolutions non-linéaires, non-locales ». Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0356.
Texte intégralThe main results of my PhD thesis are :• Uniqueness of bounded vorticity solution for the 2D euler equation with sources and sinks• Uniqueness of bounded momentum solution of the CH equation with in and out-flow• An algorythm for the simulation of growth of Micro algae• shape derivative of the Dirichlet to neumann operator on a generic bounded domain• regularity of the Dirichlet to Neumann operator on a generic H^s manifold
Doyeux, Vincent. « Modelisation et simulation de systemes multi-fluides. Application aux ecoulements sanguins ». Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00939930.
Texte intégralMartin, Sébastien. « Modélisation et analyse mathématique de problèmes issus de la mécanique des fluides : applications à la tribologie et aux sciences du vivant ». Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00765580.
Texte intégralLivres sur le sujet "PDEs in fluid mechanics"
Layton, Anita T., et Sarah D. Olson. Biological fluid dynamics : Modeling, computations, and applications : AMS Special Session, Biological Fluid Dynamics : Modeling, Computations, and Applications : October 13, 2012, Tulane University, New Orleans, Louisiana. Providence, Rhode Island : American Mathematical Society, 2014.
Trouver le texte intégralDurst, Franz. Fluid Mechanics. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71343-2.
Texte intégralSpurk, Joseph H. Fluid Mechanics. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58277-6.
Texte intégralBoxer, G. Fluid Mechanics. London : Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09805-7.
Texte intégralSpurk, Joseph H., et Nuri Aksel. Fluid Mechanics. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30259-7.
Texte intégralWidden, Martin. Fluid Mechanics. London : Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-11334-7.
Texte intégralDouglas, J. F. Fluid mechanics. 3e éd. Harlow : Longman Scientific & Technical, 1995.
Trouver le texte intégralBrewster, Hilary D. Fluid mechanics. Jaipur, India : Oxford Book Co., 2009.
Trouver le texte intégralWhite, Frank M. Fluid mechanics. 7e éd. New York, N.Y : McGraw Hill, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "PDEs in fluid mechanics"
Mkhatshwa, Musawenkhosi, Sandile Motsa et Precious Sibanda. « Overlapping Multi-domain Bivariate Spectral Method for Systems of Nonlinear PDEs with Fluid Mechanics Applications ». Dans Advances in Fluid Dynamics, 685–99. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4308-1_54.
Texte intégralRanjan, Aditya, Vijay S. Duryodhan et Nagesh D. Patil. « On the Replication of Human Skin Texture and Hydration on a PDMS-Based Artificial Human Skin Model ». Dans Fluid Mechanics and Fluid Power, Volume 4, 699–708. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7177-0_58.
Texte intégralBresch, Didier, et Pierre-Emmanuel Jabin. « Global Weak Solutions of PDEs for Compressible Media : A Compactness Criterion to Cover New Physical Situations ». Dans Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, 33–54. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52042-1_2.
Texte intégralWard, Michael J., et Mary-Catherine Kropinski. « Asymptotic Methods For PDE Problems In Fluid Mechanics and Related Systems With Strong Localized Perturbations In Two-Dimensional Domains ». Dans Asymptotic Methods in Fluid Mechanics : Survey and Recent Advances, 23–70. Vienna : Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0408-8_2.
Texte intégralDiening, Lars, Petteri Harjulehto, Peter Hästö et Michael Růžička. « PDEs and Fluid Dynamics ». Dans Lebesgue and Sobolev Spaces with Variable Exponents, 437–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8_14.
Texte intégralBoffi, Daniele, Frédéric Hecht et Olivier Pironneau. « Distributed Lagrange Multiplier for Fluid-Structure Interactions ». Dans Numerical Methods for PDEs, 129–45. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94676-4_5.
Texte intégralLarson, Mats G., et Fredrik Bengzon. « Fluid Mechanics ». Dans Texts in Computational Science and Engineering, 289–325. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_12.
Texte intégralBetounes, David. « Fluid Mechanics ». Dans Partial Differential Equations for Computational Science, 245–98. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_10.
Texte intégralLawson, Thomas B. « Fluid Mechanics ». Dans Fundamentals of Aquacultural Engineering, 84–110. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-7047-9_6.
Texte intégralNg, Xian Wen. « Fluid Mechanics ». Dans Engineering Problems for Undergraduate Students, 579–728. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13856-1_5.
Texte intégralActes de conférences sur le sujet "PDEs in fluid mechanics"
Akhtar, Imran, Jeff Borggaard, John A. Burns et Lizette Zietsman. « Using Functional Gains for Optimal Sensor Placement in Fluid-Structure Interaction ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13090.
Texte intégralPolly, James B., et J. M. McDonough. « Application of the Poor Man’s Navier–Stokes Equations to Real-Time Control of Fluid Flow ». Dans ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63564.
Texte intégralDebnath, Pinku, et K. M. Pandey. « Performance Investigation on Single Phase Pulse Detonation Engine Using Computational Fluid Dynamics ». Dans ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66274.
Texte intégralMathur, Sanjay R., Aarti Chigullapalli et Jayathi Y. Murthy. « A Unified Unintrusive Discrete Approach to Sensitivity Analysis and Uncertainty Propagation in Fluid Flow Simulations ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37789.
Texte intégralCui, X. « Solving Coupled Partial Differential Equations in Porous/Fractured Geomaterials ». Dans 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0836.
Texte intégralFopah Lele, Armand, Fréderic Kuznik, Holger Urs Rammelberg, Thomas Schmidt et Wolfgang K. L. Ruck. « Modeling Approach of Thermal Decomposition of Salt-Hydrates for Heat Storage Systems ». Dans ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17022.
Texte intégralMüftü, Sinan. « Numerical Solution of the Equations Governing the Steady State of a Thin Cylindrical Web Supported by an Air Cushion ». Dans ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0225.
Texte intégralAlexanderian, Alen, William Reese, Ralph C. Smith et Meilin Yu. « Efficient Uncertainty Quantification for Biotransport in Tumors With Uncertain Material Properties ». Dans ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86216.
Texte intégralGraber, Benjamin D., Athanasios P. Iliopoulos, John G. Michopoulos, John C. Steuben, Andrew J. Birnbaum et Nicole A. Apetre. « Towards a Computational Framework for Hypervelocity-Induced Atmospheric Plasma Modeling ». Dans ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-143763.
Texte intégralLi, Guangfa, Yanglong Lu et Dehao Liu. « Physics-Constrained Convolutional Recurrent Neural Networks for Solving Spatial-Temporal PDEs With Arbitrary Boundary Conditions ». Dans ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-134569.
Texte intégralRapports d'organisations sur le sujet "PDEs in fluid mechanics"
Monin, A. S., et A. M. Yaglom. Statistical Fluid Mechanics : The Mechanics of Turbulence. Fort Belvoir, VA : Defense Technical Information Center, septembre 1999. http://dx.doi.org/10.21236/ada398728.
Texte intégralPuterbaugh, Steven L., David Car et S. Todd Bailie. Turbomachinery Fluid Mechanics and Control. Fort Belvoir, VA : Defense Technical Information Center, janvier 2010. http://dx.doi.org/10.21236/ada514567.
Texte intégralMartinez-Sanchez, Manuel. Physical Fluid Mechanics in MPD Thrusters. Fort Belvoir, VA : Defense Technical Information Center, septembre 1987. http://dx.doi.org/10.21236/ada190309.
Texte intégralAnderson, D. M., G. B. McFadden et A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Gaithersburg, MD : National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6018.
Texte intégralCar, David, et Steven L. Puterbaugh. Fluid Mechanics of Compression System Flow Control. Fort Belvoir, VA : Defense Technical Information Center, juillet 2005. http://dx.doi.org/10.21236/ada444617.
Texte intégralBdzil, John Bohdan. Fluid Mechanics of an Obliquely Mounted MIV Gauge. Office of Scientific and Technical Information (OSTI), mars 2018. http://dx.doi.org/10.2172/1429987.
Texte intégralLipfert, F., M. Daum, G. Hendrey et K. Lewin. Fluid mechanics and spatial performance of face arrays. Office of Scientific and Technical Information (OSTI), mai 1989. http://dx.doi.org/10.2172/5292902.
Texte intégralSeume, J., G. Friedman et T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), mars 1992. http://dx.doi.org/10.2172/10181069.
Texte intégralHomsy, George M. Fundamental Studies of Fluid Mechanics : Stability in Porous Media. Office of Scientific and Technical Information (OSTI), février 2014. http://dx.doi.org/10.2172/1120125.
Texte intégralKeller, H. B., et P. G. Saffman. Analysis, scientific computing and fundamental studies in fluid mechanics. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/5025553.
Texte intégral