Littérature scientifique sur le sujet « PEG HYDROGEL »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « PEG HYDROGEL ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "PEG HYDROGEL"
Wen, Jie, Xiaopeng Zhang, Mingwang Pan, Jinfeng Yuan, Zhanyu Jia et Lei Zhu. « A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking ». Polymers 12, no 1 (19 janvier 2020) : 239. http://dx.doi.org/10.3390/polym12010239.
Texte intégralLu, Qiqi, Mirali Pandya, Abdul Jalil Rufaihah, Vinicius Rosa, Huei Jinn Tong, Dror Seliktar et Wei Seong Toh. « Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System ». Stem Cells International 2015 (2015) : 1–9. http://dx.doi.org/10.1155/2015/525367.
Texte intégralHenise, Jeff, Shaun D. Fontaine, Brian R. Hearn, Samuel J. Pfaff, Eric L. Schneider, Julia Malato, Donghui Wang, Byron Hann, Gary W. Ashley et Daniel V. Santi. « In Vitro-In Vivo Correlation for the Degradation of Tetra-PEG Hydrogel Microspheres with Tunable β-Eliminative Crosslink Cleavage Rates ». International Journal of Polymer Science 2019 (10 février 2019) : 1–7. http://dx.doi.org/10.1155/2019/9483127.
Texte intégralSousa, Gustavo F., Samson Afewerki, Dalton Dittz, Francisco E. P. Santos, Daniele O. Gontijo, Sérgio R. A. Scalzo, Ana L. C. Santos et al. « Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering ». Journal of Functional Biomaterials 13, no 2 (18 avril 2022) : 45. http://dx.doi.org/10.3390/jfb13020045.
Texte intégralMazzarotta, Alessia, Tania Mariastella Caputo, Edmondo Battista, Paolo Antonio Netti et Filippo Causa. « Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay ». Sensors 21, no 22 (18 novembre 2021) : 7671. http://dx.doi.org/10.3390/s21227671.
Texte intégralWang, Xiaoyan, Yu Zhang, Wei Xue, Hong Wang, Xiaozhong Qiu et Zonghua Liu. « Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization ». Journal of Biomaterials Applications 31, no 6 (25 novembre 2016) : 923–32. http://dx.doi.org/10.1177/0885328216680343.
Texte intégralTanaka, Shizuma, Shinsuke Yukami, Yuhei Hachiro, Yuichi Ohya et Akinori Kuzuya. « Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media ». Polymers 11, no 10 (2 octobre 2019) : 1607. http://dx.doi.org/10.3390/polym11101607.
Texte intégralGüney, Aysun, Christina Gardiner, Andrew McCormack, Jos Malda et Dirk Grijpma. « Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels ». Bioengineering 5, no 4 (14 novembre 2018) : 99. http://dx.doi.org/10.3390/bioengineering5040099.
Texte intégralCao, Ye, Bae Hoon Lee, Scott Alexander Irvine, Yee Shan Wong, Havazelet Bianco Peled et Subramanian Venkatraman. « Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype ». Polymers 12, no 3 (17 mars 2020) : 670. http://dx.doi.org/10.3390/polym12030670.
Texte intégralYao, Fang, Xiao Xia Ji, Bao Ping Lin et Guo Dong Fu. « Synthesis of High Strength and Well-Defined PEG-Based Hydrogel Networks via Click Chemistry ». Advanced Materials Research 304 (juillet 2011) : 131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.304.131.
Texte intégralThèses sur le sujet "PEG HYDROGEL"
Phelps, Edward Allen. « Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic islets ». Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45899.
Texte intégralRohn, Mathias. « Strukturcharakterisierung photochemisch vernetzter tetra-PEG Hydrogele mit unterschiedlichem Aufbau ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229602.
Texte intégralWeber, Laney M. « Biologically active PEG hydrogel microenvironments for improving encapsulated beta-cell survival and function ». Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3256423.
Texte intégralPatterson, Patrick Branch. « Creation of a Mechanical Gradient Peg-Collagen Scaffold by Photomasking Techniques ». University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384720879.
Texte intégralÖberg, Hed Kim. « Advanced polymeric scaffolds for functional materials in biomedical applications ». Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.
Texte intégralQC 20140116
Oborná, Jana. « Řízené uvolňování léčiv z biodegradabilních hydrogelů ». Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-385283.
Texte intégralWestergren, Elisabeth. « Analysis of hydrogels for immobilisation of hepatocytes (HepG2) in 3D cell culturing systems ». Thesis, Linköpings universitet, Teknisk biologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145392.
Texte intégralBellat, Vanessa. « Ingénierie d'un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative ». Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS056/document.
Texte intégralThis research work is devoted to new nanohybrid engineering composed of titanate nanoribbons for regenerative medicine. Over a first phase, nanoribbons were synthesized by hydrothermal treatment and their morphological, structural and chemical features were defined. A fine characterization by means of different techniques of transmission electron microscopy mainly enabled to determine their thickness; dimension which had never been measured so far. Subsequently, titanate nanoribbons were functionalized by different home-made heterobifunctional PEG. Those polymers present at one of their extremities specific functional groups being able to couple with numerous biological molecules. Some collagen type peptides containing cellular recognition sites were grafted onto those extremities. The so-formed nanobiohybrid will permit cellular adhesion and proliferation favouring in fine tissue healing and regeneration. To evaluate new nanohybrid biological properties, titanate nanoribbons cytoxicity and aggregating power were determined by MTT tests, performed on two cell populations (fibroblasts and cardiomyocytes) and platelet aggregation tests (human blood). Finally, when used to promote healing process, the new nanobiohybrid was formulated in the form of sodium alginate hydrogel permitting a direct application on damaged tissues. To confirm the interest of this galenic form, initial in vivo tests were realized
Worrell, Kevin. « Chemical and mechanical characterization of fully degradable double-network hydrogels based on PEG and PAA ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48985.
Texte intégralFeliciano, Danielle Ferreira. « Cinética de formação do hidrogel de polivinil álcool - polietileno glicol (PVAl-PEG) para a reparação de cartilagem articular ». [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263577.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T02:56:18Z (GMT). No. of bitstreams: 1 Feliciano_DanielleFerreira_M.pdf: 2215803 bytes, checksum: 78c936869613a6b313b028d4e7b84078 (MD5) Previous issue date: 2011
Resumo: Defeitos, doenças e acidentes que acometem a cartilagem articular para suportar às constantes solicitações mecânicas que estas regiões estão sujeitas, sendo indicada a utilização de estruturas viscoelástica resistente alto grau de atrito para preencher tais defeitos. Desta forma, foi selecionado o uso de hidrogéis para esta aplicação específica. Hidrogéis a base de poli(álcool vinilico) (PVAl) e polietileno glicol (PEG) apresentam propriedades mais adequadas, como biocompatibilidade, não estimulando reação imunológica ao organismo; baixa adesão de células sanguíneas, evitando coágulos; capacidade de absorção de água (intumecimento), proporcionando lubrificação do material e alto grau de transparência. O processo para obtenção desta blenda e formação de hidrogel foi realizado utilizando uma proporção de 1:9 (PEG:PVAl). O iniciador 2- hidroxi-4'-(2-hidroxietoxi)-2-metilpropiofenona foi adicionado à blenda, em 1% do volume total. È este iniciador, quando estimulado via temperatura, laser ou infravermelho, que irá desencadear as ligações intermacromoleculares de PEG-PVAl permitindo a formação de uma organização grafitizada da blenda dentro do hidrogel. Foi acompanhada a cinética de formação deste hidrogel através de reometria de placas, Espectroscopia de Infravermelho por Transformada de Fourier (FTIR) e Calorimetria Diferencial de Varredura (DSC). As amostras também foram devidamente caracterizadas quanto à condutividade térmica, densidade e absorção óptica. Observou-se que o iniciador ativou as ligações do grupo acetato do PVAl com as hidroxilas do PEG, resultando em formação de grupos ester. São estas ligações que caracterizam a formação do hidrogel grafitizado. Além disso, ocorreu a inversão do módulo viscoso em relação ao módulo de elasticidade, comprovando a reação de grafitização
Abstract: Defects, diseases and accidents that affect the articular cartilage can withstand constant mechanical stresses that they are subject, which indicated the use of viscoelastic structures resistant to high friction to fill these defects. In this way, the use was selected of hydrogels for this application it specifies. To base of I polished hydrogels polyvinyl alcohol (PVA) and polyethylene glycol (PEG) present more appropriate properties, biocompatibility, not stimulating reaction immunologically to the organism; low adhesion of blood cells, avoiding clots; capacity of absorption of water (swelling), providing lubrication of the material and high degree of transparency. The process for getting this blend and formation of hydrogel was carried out using a proportion of 1:9 (PEG:PVA). The initiator hidroxi 2-hidroxi-4 '-(2-hidroxietoxi)-2- metilpropiofenona was added to the blend, in 1 % of the total volume. This initiator, when stimulated he was seeing temperature, laser or infrared, what will be going to unleash the connections intermacromoleculares of PEG-PVA allowing the formation of an grafiting organization of the blend inside the hydrogel. There was accompanied the kinetic one of formation of this hydrogel through parallel plates rheometry, Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC). The samples also were characterized property as for the thermal condutivity, density and optical absorption. It noticed to itself that the initiator activated the connections of the group acetate of the PVA with the hydroxyl group of PEG, when ester is turning in formation of groups. It is these connections that characterize the formation of the hydrogel grafiting. Besides, it took place to inversion of the viscous module regarding the module of elasticity, proving the reaction of grafiting
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Livres sur le sujet "PEG HYDROGEL"
Linee guida per la definizione di un piano strategico per lo sviluppo del vettore energetico idrogeno. Pisa : PLUS, 2004.
Trouver le texte intégralRakwichīan, Watthanaphong, et Mahāwitthayālai Narēsūan. Phāk Wichā Fisik., dir. Rāingān kānwičhai rư̄ang kānphatthanā ʻilekthrōlaisœ̄ phư̄a kānphalit haidrōgēn pen chư̄aphlœ̄ng saʻāt čhāk sēn sǣngʻāthit : Development of the hydrogen electrolyzer for clean fuel production from solar cell. [Bangkok?] : Phāk Wichā Fisik, Khana Witthayāsāt, Mahāwitthayālai Narēsūan, 1996.
Trouver le texte intégralKrywawych, Steve. Metabolic Acidosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0081.
Texte intégralPEM Electrolysis for Hydrogen Production : Principles and Applications. Taylor & Francis Group, 2015.
Trouver le texte intégralLi, Hui, Haijiang Wang, Dmitri Bessarabov et Nana Zhao. PEM Electrolysis for Hydrogen Production : Principles and Applications. Taylor & Francis Group, 2016.
Trouver le texte intégralPEM Electrolysis for Hydrogen Production : Principles and Applications. Taylor & Francis Group, 2017.
Trouver le texte intégralLi, Hui, Haijiang Wang, Dmitri Bessarabov et Nana Zhao. PEM Electrolysis for Hydrogen Production : Principles and Applications. Taylor & Francis Group, 2016.
Trouver le texte intégralLi, Hui, Haijiang Wang, Dmitri Bessarabov et Nana Zhao. PEM Electrolysis for Hydrogen Production : Principles and Applications. Taylor & Francis Group, 2016.
Trouver le texte intégralLi, Hui, Haijiang Wang, Dmitri Bessarabov et Nana Zhao. PEM Electrolysis for Hydrogen Production : Principles and Applications. Taylor & Francis Group, 2016.
Trouver le texte intégralQian, Dianwei, Shiwen Tong et Chunlei Huo. Hydrogen-Air PEM Fuel Cell : Integration, Modeling and Control. De Gruyter, Inc., 2018.
Trouver le texte intégralChapitres de livres sur le sujet "PEG HYDROGEL"
Mendez, Uziel, Hong Zhou et Ariella Shikanov. « Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles ». Dans Biomaterials for Tissue Engineering, 115–28. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7741-3_9.
Texte intégralGao, Guifang, Karen Hubbell, Arndt F. Schilling, Guohao Dai et Xiaofeng Cui. « Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel ». Dans Methods in Molecular Biology, 391–98. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_28.
Texte intégralZustiak, Silviya Petrova. « Hydrolytically Degradable Polyethylene Glycol (PEG) Hydrogel : Synthesis, Gel Formation, and Characterization ». Dans Extracellular Matrix, 211–26. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_17.
Texte intégralKobel, Stefan A., et Matthias P. Lutolf. « Fabrication of PEG Hydrogel Microwell Arrays for High-Throughput Single Stem Cell Culture and Analysis ». Dans Methods in Molecular Biology, 101–12. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-388-2_7.
Texte intégralHiemstra, Christine, Zhiyuan Zhong, Pieter J. Dijkstra et Jan Feijen. « Stereocomplexed PEG-PLA Hydrogels ». Dans Hydrogels, 53–65. Milano : Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_6.
Texte intégralMillet, Pierre. « PEM Water Electrolysis ». Dans Hydrogen Production, 63–116. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527676507.ch3.
Texte intégralBeyer, Ulrike, Sebastian Porstmann, Christoph Baum et Clemens Müller. « Production of PEM systems, upscaling and rollout strategy ». Dans Hydrogen Technologies, 289–320. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22100-2_11.
Texte intégralLee, Doo Sung, et Chaoliang He. « In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels ». Dans Biomedical Applications of Hydrogels Handbook, 123–46. New York, NY : Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5919-5_7.
Texte intégralBarbir, F. « Progress in PEM Fuel Cell Systems Development ». Dans Hydrogen Energy System, 203–13. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0111-0_14.
Texte intégralSecanell, M., A. Jarauta, A. Kosakian, M. Sabharwal et J. Zhou. « PEM Fuel Cells : Modeling ». Dans Fuel Cells and Hydrogen Production, 235–93. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_1019.
Texte intégralActes de conférences sur le sujet "PEG HYDROGEL"
Jang, Eunji, Saemi Park, Hyun Jong Lee, Keshava Murthy P.S et Won-Gun Koh. « Development of phenol detecting biosensor using PEG hydrogel microparticles ». Dans 2010 IEEE 3rd International Nanoelectronics Conference (INEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5425132.
Texte intégralArcaute, K., L. Ochoa, B. K. Mann et R. B. Wicker. « Stereolithography of PEG Hydrogel Multi-Lumen Nerve Regeneration Conduits ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81436.
Texte intégralCoelho, Carlos D. F., João A. Jesus, Daniela C. Vaz, Ricardo Lagoa et Maria João Moreno. « BSA-PEG Hydrogel : A Novel Protein-Ligand Binding 3D Matrix ». Dans Biosystems in Toxicology and Pharmacology – Current Challenges. Basel Switzerland : MDPI, 2022. http://dx.doi.org/10.3390/bitap-12878.
Texte intégralAbdul Hamid, Zuratul Ain, Anton Blencowe, Berkay Ozcelik, Greg Qiao, Geoff Stevens, Jason Palmer, Eighth Keren M. Abberton, Wayne A. Morrison et Anthony K. J. Penington. « In vivo studies of biocompatible PEG-based hydrogel scaffolds with biofactors ». Dans 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2014. http://dx.doi.org/10.1109/iecbes.2014.7047498.
Texte intégralWatanabe, Takaichi, et Shoji Takeuchi. « Microfluidic formation of monodisperse tetra-PEG hydrogel microbeads for cell encapsulation ». Dans 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421728.
Texte intégralEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant et Virginia L. Ferguson. « The Mechanical Behavior of Engineered Hydrogels ». Dans ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Texte intégralLee, Y. E., et W. Chen. « Synthesis and characterization of novel crosslinked PEG-graft-chitosan/hyaluronic acid hydrogel ». Dans 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413372.
Texte intégralGeisler, Chris G., Ho-Lung Li, Qingwei Zhang, Jack G. Zhou, David M. Wootton et Peter I. Lelkes. « Thermosensitive/Photocrosslinkable Hydrogel for Soft Tissue Scaffold Printing ». Dans ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50166.
Texte intégralGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes et Jack G. Zhou. « Soft Biomaterial Study for 3-D Tissue Scaffold Printing ». Dans ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Texte intégralCherukupalli, Abhimanyu, Michael Pellegrini, Ron Falkowski, Michael Medini et Ronke Olabisi. « The influence of PEG molecular weight on apparent hydrogel microsphere size as measured by the Coulter principle ». Dans 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972754.
Texte intégralRapports d'organisations sur le sujet "PEG HYDROGEL"
James, Brian D., George N. Baum, Julie Perez et Kevin N. Baum. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. Office of Scientific and Technical Information (OSTI), décembre 2009. http://dx.doi.org/10.2172/1218403.
Texte intégralStaples, L., et D. P. Bloomfield. Hydrogen Supply System for Small PEM Fuel Cell Stacks. Fort Belvoir, VA : Defense Technical Information Center, juillet 1997. http://dx.doi.org/10.21236/ada396718.
Texte intégralJoseph Schwartz, Hankwon Lim et Raymond Drnevich. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), décembre 2010. http://dx.doi.org/10.2172/1026502.
Texte intégralBarbir, F., F. Marken, B. Bahar et J. A. Kolde. Development of a 10 kW hydrogen/air PEM fuel cell stack. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/460279.
Texte intégralMahadevan, K., K. Judd, H. Stone, J. Zewatsky, A. Thomas, H. Mahy et D. Paul. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets. Office of Scientific and Technical Information (OSTI), avril 2007. http://dx.doi.org/10.2172/1219590.
Texte intégralBeckert, Werner F., Ottmar H. Dengel, Robert D. Lynch, Gary T. Bowman et Aaron J. Greso. Solid Hydride Hydrogen Source for Small Proton Exchange Membrane (PEM) Fuel Cells. Fort Belvoir, VA : Defense Technical Information Center, mai 1997. http://dx.doi.org/10.21236/ada371137.
Texte intégralSieverman, Joe, et Stephen Szymanski. Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage. Office of Scientific and Technical Information (OSTI), mars 2020. http://dx.doi.org/10.2172/1783792.
Texte intégralWalker, Charles W., Jiang Jr., Chu Rhongzhong et Deryn. An Overview of Hydrogen Generation and Storage for Low-Temperature PEM Fuel Cells. Fort Belvoir, VA : Defense Technical Information Center, novembre 1999. http://dx.doi.org/10.21236/ada372504.
Texte intégralThomas H. Vanderspurt, Zissis Dardas, Ying She, Mallika Gummalla et Benoit Olsommer. On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), décembre 2005. http://dx.doi.org/10.2172/861890.
Texte intégralEdward F. Kiczek. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility. Office of Scientific and Technical Information (OSTI), août 2007. http://dx.doi.org/10.2172/913332.
Texte intégral