Articles de revues sur le sujet « Pest Classification »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Pest Classification ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Sushma D S, Mohammed Alqhama, Aravind M, Jayanth A B, and Rakshith Kumar K. "Pest Detection and Classification in Peanut Crops." International Research Journal on Advanced Engineering and Management (IRJAEM) 2, no. 05 (2024): 1372–79. http://dx.doi.org/10.47392/irjaem.2024.0189.
Texte intégralK.H, Sandeep. "Crop and Pest Classification Using Deep Learning." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem43290.
Texte intégralMyat, Mon Kyaw, San Nwe San, and Myint Yee Myint. "Pest Classification and Pesticide Recommendation System." International Journal of Trend in Scientific Research and Development 3, no. 5 (2019): 2187–91. https://doi.org/10.5281/zenodo.3591203.
Texte intégralDoan, Thanh-Nghi. "Large-Scale Insect Pest Image Classification." Journal of Advances in Information Technology 14, no. 2 (2023): 328–41. http://dx.doi.org/10.12720/jait.14.2.328-341.
Texte intégralNyrop, Jan P., Michael R. Binns, and Wopke van der Werf. "Sampling for IPM Decision Making: Where Should We Invest Time and Resources?" Phytopathology® 89, no. 11 (1999): 1104–11. http://dx.doi.org/10.1094/phyto.1999.89.11.1104.
Texte intégralP, Venkatasaichandrakanth, and Iyapparaja M. "GROUNDNUT CROP PEST DETECTION AND CLASSIFICATION USING COMPREHENSIVE DEEP-LEARNING MODELS." Suranaree Journal of Science and Technology 31, no. 1 (2024): 020028(1–17). http://dx.doi.org/10.55766/sujst-2024-01-e02544.
Texte intégralMr.R., Madanachitran. "DEEP LEARNING-BASED PEST CLASSIFICATION FOR PESTICIDE RECOMMENDATION IN AGRICULTURAL SYSTEMS." International Journal of Advances in Engineering & Scientific Research 10, no. 1 (2023): 17–27. https://doi.org/10.5281/zenodo.14924841.
Texte intégralBinns, Michael R., Jan P. Nyrop, and Wopke Van Der Werf. "Monitoring Pest Abundance by Cascading Density Classification." American Entomologist 42, no. 2 (1996): 113–21. http://dx.doi.org/10.1093/ae/42.2.113.
Texte intégralD. R, Mrs Dr Thirupurasundari. "Agriculture Pest Classification using Deep CNN Model." International Journal for Research in Applied Science and Engineering Technology 13, no. 4 (2025): 307–17. https://doi.org/10.22214/ijraset.2025.68207.
Texte intégralS. Sabapathi, N. Vijayalakshmi. "A Unified Deep Learning Framework for Accurate Pest Detection and Classification in Agriculture." Journal of Information Systems Engineering and Management 10, no. 31s (2025): 599–612. https://doi.org/10.52783/jisem.v10i31s.5115.
Texte intégralAmin, Javeria, Muhammad Almas Anjum, Rida Zahra, Muhammad Imran Sharif, Seifedine Kadry, and Lukas Sevcik. "Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network." Agriculture 13, no. 3 (2023): 662. http://dx.doi.org/10.3390/agriculture13030662.
Texte intégralLiu, Liangliang, Jing Chang, Shixin Qiao, Jinpu Xie, Xin Xu, and Hongbo Qiao. "PMLPNet: Classifying Multi-Class Pests in Wild Environment via a Novel Convolutional Neural Network." Agronomy 14, no. 8 (2024): 1729. http://dx.doi.org/10.3390/agronomy14081729.
Texte intégralBastian, Ade, Adie Iman Nurzaman, Tri Ferga Prasetyo, and Sri Fatimah. "Roselle Pest Detection and Classification Using Threshold and Template Matching." Journal of Image and Graphics 11, no. 4 (2023): 330–42. http://dx.doi.org/10.18178/joig.11.4.330-342.
Texte intégralCheng, Zekai, and Wan Xia. "Fine-Grained Image Classification on Agricultural Pest Larvae." IOP Conference Series: Earth and Environmental Science 792, no. 1 (2021): 012037. http://dx.doi.org/10.1088/1755-1315/792/1/012037.
Texte intégralPattnaik, Gayatri, and Kodimala Parvathy. "Machine learning-based approaches for tomato pest classification." TELKOMNIKA (Telecommunication Computing Electronics and Control) 20, no. 2 (2022): 321. http://dx.doi.org/10.12928/telkomnika.v20i2.19740.
Texte intégralShin, Minsu, Yeongseo Ha, and Jaechang Shim. "Lightweight Lepidopteran Pest Classification Model Using Knowledge Distillation." Journal of Korea Multimedia Society 28, no. 2 (2025): 161–69. https://doi.org/10.9717/kmms.2025.28.2.161.
Texte intégralThuse, Sanjyot, and Meena Chavan. "Pest Classification using Morphological Processing in Deep Learning." International Journal of Electronics and Computer Applications 1, no. 1 (2024): 20–25. https://doi.org/10.70968/ijeaca.v1i1.thuse.
Texte intégralGayatri, Pattnaik, and Parvathi Kodimala. "Machine learning-based approaches for tomato pest classification." TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 20, no. 2 (2022): 321–28. https://doi.org/10.12928/telkomnika.v20i2.19740.
Texte intégralSovia, Nabila Ayunda, and Ni Wayan Surya Wardhani. "ENSEMBLE CNN WITH ADASYN FOR MULTICLASS CLASSIFICATION ON CABBAGE PESTS." BAREKENG: Jurnal Ilmu Matematika dan Terapan 18, no. 2 (2024): 1237–48. http://dx.doi.org/10.30598/barekengvol18iss2pp1237-1248.
Texte intégralA, Sathesh. "Spodoptera Litura Damage Severity Detection and Classification in Tomato Leaves." Journal of Innovative Image Processing 5, no. 1 (2023): 59–68. http://dx.doi.org/10.36548/jiip.2023.1.005.
Texte intégralPraharsha, Chittathuru Himala, Alwin Poulose, and Chetan Badgujar. "Comprehensive Investigation of Machine Learning and Deep Learning Networks for Identifying Multispecies Tomato Insect Images." Sensors 24, no. 23 (2024): 7858. https://doi.org/10.3390/s24237858.
Texte intégralMandliya, Dilip, and Dr Manish Vyas. "Crop Infestation Classification Using MIL-Attention Based CNN." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 01 (2024): 1–13. http://dx.doi.org/10.55041/ijsrem28309.
Texte intégralPeng, Hongxing, Huiming Xu, Guanjia Shen, Huanai Liu, Xianlu Guan, and Minhui Li. "A Lightweight Crop Pest Classification Method Based on Improved MobileNet-V2 Model." Agronomy 14, no. 6 (2024): 1334. http://dx.doi.org/10.3390/agronomy14061334.
Texte intégralNwonye, Charles A., K. Akpado, and D. O. Amaefule. "Development of a Specie-specific Bird Deterrent System using Birds Classifications by Convolutional Neural Network (CNN) Model." International Journal of Engineering Research & Science (IJOER) 10, no. 5 (2024): 07–18. https://doi.org/10.5281/zenodo.11452990.
Texte intégralKo, YuJin, HyunJun Lee, HeeJa Jeong, Li Yu, and NamHo Kim. "Deep Learning-based system for plant disease detection and classification." Korean Institute of Smart Media 12, no. 7 (2023): 9–17. http://dx.doi.org/10.30693/smj.2023.12.7.9.
Texte intégralLi, Chen, Tong Zhen, and Zhihui Li. "Image Classification of Pests with Residual Neural Network Based on Transfer Learning." Applied Sciences 12, no. 9 (2022): 4356. http://dx.doi.org/10.3390/app12094356.
Texte intégralLi, Chen, Tong Zhen, and Zhihui Li. "Image Classification of Pests with Residual Neural Network Based on Transfer Learning." Applied Sciences 12, no. 9 (2022): 4356. http://dx.doi.org/10.3390/app12094356.
Texte intégralEbrahimi, M. A., M. H. Khoshtaghaza, S. Minaei, and B. Jamshidi. "Vision-based pest detection based on SVM classification method." Computers and Electronics in Agriculture 137 (May 2017): 52–58. http://dx.doi.org/10.1016/j.compag.2017.03.016.
Texte intégralKusrini, Kusrini, Suputa Suputa, Arief Setyanto, et al. "Data augmentation for automated pest classification in Mango farms." Computers and Electronics in Agriculture 179 (December 2020): 105842. http://dx.doi.org/10.1016/j.compag.2020.105842.
Texte intégralS. Sandhya Devi, R., V. R. Vijay Kumar, and P. Sivakumar. "EfficientNetV2 Model for Plant Disease Classification and Pest Recognition." Computer Systems Science and Engineering 45, no. 2 (2023): 2249–63. http://dx.doi.org/10.32604/csse.2023.032231.
Texte intégralKim, Ga-Eun, and Chang-Hwan Son. "Multiscale Crosss Attention Vision Transformer for Pest Image Classification." Journal of Korean Institute of Information Technology 21, no. 7 (2023): 77–84. http://dx.doi.org/10.14801/jkiit.2023.21.7.77.
Texte intégralPriya, S. Lakshmi, and R. Subhashini. "Deep-Learning Model for Wheat Disease and Pest Classification." International Journal of Microsystems and IoT 2, no. 5 (2024): 871–80. https://doi.org/10.5281/zenodo.13132457.
Texte intégralLi, Zhiyong, Xueqin Jiang, Xinyu Jia, Xuliang Duan, Yuchao Wang, and Jiong Mu. "Classification Method of Significant Rice Pests Based on Deep Learning." Agronomy 12, no. 9 (2022): 2096. http://dx.doi.org/10.3390/agronomy12092096.
Texte intégralPavan, J. S., B. L. Raghunandan, Nainesh B. Patel, C. N. Rajarushi, M. R. Raiza Nazrin, and K. S. Ishwarya Lakshmi. "Baculoviruses in Integrated Pest Management of Fall Armyworm, (Spodoptera frugiperda) (Lepidoptera: Noctuidae): Structure, Classification and Application." Journal of Advances in Biology & Biotechnology 27, no. 9 (2024): 261–71. http://dx.doi.org/10.9734/jabb/2024/v27i91296.
Texte intégralSrilekha, N., V. Tejaswini, M. Sneha, Abdul Aas Shaik, Sohail Zahid, and Zaheer Shaik. "Deep Learning for Pest Detection and Extraction." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem42777.
Texte intégralDimas Saputra, Archamul Fajar Pratama, Muhammad Dawam Fakhri, Muhammad Ahsanur Rafi, and Fetty Tri Anggraeny. "CLASSIFICATION OF INSECT PESTS IN AGRICULTURE USING INCEPTION-RESNET-V2 ARCHITECTURE." Antivirus : Jurnal Ilmiah Teknik Informatika 19, no. 1 (2025): 41–51. https://doi.org/10.35457/antivirus.v19i1.4107.
Texte intégralDe Oliveira Costa, Pedro Lucas, Thiago Matheus De Oliveira Costa, Larissa Ferreira Rodrigues Moreira, Leandro Henrique Furtado Pinto Silva, and João Fernando Mari. "Classification of Agricultural Pests Through Digital Images Using Deep Learning." Revista de Informática Teórica e Aplicada 32, no. 1 (2025): 18–25. https://doi.org/10.22456/2175-2745.143520.
Texte intégralHuang, Qixuan. "Comparison of Deep Transfer Learning Models for Pest Image Classification in Agriculture." Highlights in Science, Engineering and Technology 94 (April 26, 2024): 9–16. http://dx.doi.org/10.54097/kxbxjn03.
Texte intégralLi, Qiming. "Optimizing Token Fusion Mechanisms in Swin Transformer for Improved Feature Representation and Fine-Grained Insect Classification." Applied and Computational Engineering 142, no. 1 (2025): 151–60. https://doi.org/10.54254/2755-2721/2025.kl22294.
Texte intégralElci, Brundha, and Moulyashree S. "Pest Detection System for Farmers." International Research Journal of Computer Science 12, no. 04 (2025): 171–76. https://doi.org/10.26562/irjcs.2025.v1204.10.
Texte intégralIbrahim, Mohd Firdaus, Siti Khairunniza-Bejo, Marsyita Hanafi, Mahirah Jahari, Fathinul Syahir Ahmad Saad, and Mohammad Aufa Mhd Bookeri. "Deep CNN-Based Planthopper Classification Using a High-Density Image Dataset." Agriculture 13, no. 6 (2023): 1155. http://dx.doi.org/10.3390/agriculture13061155.
Texte intégralDinca, Marius Alexandru, Dan Popescu, Loretta Ichim, and Nicoleta Angelescu. "Ensemble of Efficient Vision Transformers for Insect Classification." Applied Sciences 15, no. 13 (2025): 7610. https://doi.org/10.3390/app15137610.
Texte intégralTang, Wentao, and Zelin Hu. "Potato Disease and Pest Question Classification Based on Prompt Engineering and Gated Convolution." Agriculture 15, no. 5 (2025): 493. https://doi.org/10.3390/agriculture15050493.
Texte intégralYuan, Yi, and Xiangyun Hu. "RANDOM FOREST AND OBJECTED-BASED CLASSIFICATION FOR FOREST PEST EXTRACTION FROM UAV AERIAL IMAGERY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 1093–98. http://dx.doi.org/10.5194/isprsarchives-xli-b1-1093-2016.
Texte intégralYuan, Yi, and Xiangyun Hu. "RANDOM FOREST AND OBJECTED-BASED CLASSIFICATION FOR FOREST PEST EXTRACTION FROM UAV AERIAL IMAGERY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 1093–98. http://dx.doi.org/10.5194/isprs-archives-xli-b1-1093-2016.
Texte intégralYu, Junwei, Yi Shen, Nan Liu, and Quan Pan. "Frequency-Enhanced Channel-Spatial Attention Module for Grain Pests Classification." Agriculture 12, no. 12 (2022): 2046. http://dx.doi.org/10.3390/agriculture12122046.
Texte intégralA., Pushpa Athisaya Sakila Rani, and N. Suresh Singh Dr. "Pest and Disease Identification in Paddy by Symptomatic Assessment of The Leaf using Hybrid CNN-LSTM Algorithm." International Journal of Recent Technology and Engineering (IJRTE) 10, no. 6 (2022): 7–10. https://doi.org/10.35940/ijrte.F6795.0310622.
Texte intégralArame, Mohamed, Issam Meftah Kadmiri, Francois Bourzeix, Yahya Zennayi, Rachid Boulamtat, and Abdelghani Chehbouni. "Detection of Leaf Miner Infestation in Chickpea Plants Using Hyperspectral Imaging in Morocco." Agronomy 15, no. 5 (2025): 1106. https://doi.org/10.3390/agronomy15051106.
Texte intégralNguyen, Tuan, Quoc-Tuan Vien, and Harin Sellahewa. "An Efficient Pest Classification In Smart Agriculture Using Transfer Learning." EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 8, no. 26 (2021): 168227. http://dx.doi.org/10.4108/eai.26-1-2021.168227.
Texte intégralDurgabai, R. P. L., P. Bhargavi, and S. Jyothi. "Classification of Pests for Rice Crop Using Big Data Analytics." Asian Journal of Computer Science and Technology 8, no. 3 (2019): 27–31. http://dx.doi.org/10.51983/ajcst-2019.8.3.2737.
Texte intégral