Littérature scientifique sur le sujet « Phosphomimetic mutants »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Phosphomimetic mutants ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Phosphomimetic mutants"
Clarke, Dominic M., Michael C. Brown, David P. LaLonde et Christopher E. Turner. « Phosphorylation of actopaxin regulates cell spreading and migration ». Journal of Cell Biology 166, no 6 (7 septembre 2004) : 901–12. http://dx.doi.org/10.1083/jcb.200404024.
Texte intégralWoodman, Julie, Matthew Hoffman, Monika Dzieciatkowska, Kirk C. Hansen et Paul C. Megee. « Phosphorylation of the Scc2 cohesin deposition complex subunit regulates chromosome condensation through cohesin integrity ». Molecular Biology of the Cell 26, no 21 (novembre 2015) : 3754–67. http://dx.doi.org/10.1091/mbc.e15-03-0165.
Texte intégralRolli-Derkinderen, Malvyne, Gilles Toumaniantz, Pierre Pacaud et Gervaise Loirand. « RhoA Phosphorylation Induces Rac1 Release from Guanine Dissociation Inhibitor α and Stimulation of Vascular Smooth Muscle Cell Migration ». Molecular and Cellular Biology 30, no 20 (9 août 2010) : 4786–96. http://dx.doi.org/10.1128/mcb.00381-10.
Texte intégralDu, Wei, Yun Zhou, Suzette Pike et Qishen Pang. « Cdk1-Dependent Phosphorylation ofNPM Overrides G2/M Checkpoint and Increases Leukemic Blasts in Mice ». Blood 112, no 11 (16 novembre 2008) : 1322. http://dx.doi.org/10.1182/blood.v112.11.1322.1322.
Texte intégralCallaci, Sandhya, Kylee Morrison, Xiangqiang Shao, Amber L. Schuh, Yueju Wang, John R. Yates, Jeff Hardin et Anjon Audhya. « Phosphoregulation of the C. elegans cadherin–catenin complex ». Biochemical Journal 472, no 3 (27 novembre 2015) : 339–52. http://dx.doi.org/10.1042/bj20150410.
Texte intégralLevy, Robin, Emily Gregory, Wade Borcherds et Gary Daughdrill. « p53 Phosphomimetics Preserve Transient Secondary Structure but Reduce Binding to Mdm2 and MdmX ». Biomolecules 9, no 3 (2 mars 2019) : 83. http://dx.doi.org/10.3390/biom9030083.
Texte intégralBrand, Sue Ellen, Martha Scharlau, Lois Geren, Marissa Hendrix, Clayre Parson, Tyler Elmendorf, Earl Neel et al. « Accelerated Evolution of Cytochrome c in Higher Primates, and Regulation of the Reaction between Cytochrome c and Cytochrome Oxidase by Phosphorylation ». Cells 11, no 24 (12 décembre 2022) : 4014. http://dx.doi.org/10.3390/cells11244014.
Texte intégralBakovic, Allison, Nishank Bhalla, Stephanie Kortchak, Chengqun Sun, Weidong Zhou, Aslaa Ahmed, Kenneth Risner, William B. Klimstra et Aarthi Narayanan. « Venezuelan Equine Encephalitis Virus nsP3 Phosphorylation Can Be Mediated by IKKβ Kinase Activity and Abrogation of Phosphorylation Inhibits Negative-Strand Synthesis ». Viruses 12, no 9 (13 septembre 2020) : 1021. http://dx.doi.org/10.3390/v12091021.
Texte intégralMaik-Rachline, Galia, et Rony Seger. « Variable phosphorylation states of pigment-epithelium–derived factor differentially regulate its function ». Blood 107, no 7 (1 avril 2006) : 2745–52. http://dx.doi.org/10.1182/blood-2005-06-2547.
Texte intégralDeng, Xingming, Fengqin Gao et W. Stratford May. « Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS ». Blood 102, no 9 (1 novembre 2003) : 3179–85. http://dx.doi.org/10.1182/blood-2003-04-1027.
Texte intégralThèses sur le sujet "Phosphomimetic mutants"
Sarkis, Pascale. « Conformational dynamics and interactions of eIF4B IDR and its phosphomimetic mutants ». Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0353.
Texte intégralThe structure-function paradigm defines that protein function is determined by its structure, and detailed structural knowledge provides critical insights into its functional mechanisms. This paradigm has been challenged with the intrinsically disordered proteins (IDPs) that lack a stable structure, yet they are functional under physiological conditions. Eukaryotic translation initiation factor 4B (eIF4B) is an IDP involved in the regulation of translation initiation in eukaryotes. As an essential co-factor of RNA helicase eIF4A, eIF4B is particularly important for translation of mRNAs with long and structured 5' untranslated regions. It contains several defined functional domains/regions, including the structured N-terminal RNA recognition motif (RRM) domain, the disordered DRYG region, enriched with aspartate, arginine, tyrosine and glycine and the disordered C-terminal arginine-rich motif (ARM) region. While the RRM and ARM domains mediate RNA binding, the DRYG region is essential for eIF4B self-association. eIF4B is overexpressed in cancer cells, and may influence stress granule formation. The cellular activity of eIF4B is regulated by phosphorylation, notably at Ser406 and Ser422 residues.Despite its importance, only the well-structured RRM domain has been characterized at atomic level. The molecular details of its large intrinsically disordered region (IDR) are still unknown, as proteins of this nature are difficult to characterize due to their conformational heterogeneity and dynamic behavior. During my PhD work I had four objectives:i) structural characterization of eIF4B IDR in its monomeric state;ii) characterization of conformational dynamics and interactions of eIF4B IDR on the molecular level upon oligomerization and upon condensation on the mesoscopic scale;iii) investigation of conformational dynamics of eIF4B IDR upon RNA interactions;iv) analysis of the impact of key phosphomimetic mutations on eIF4B protein - protein interactions, eIF4B condensation and eIF4B - RNA interactions.Using single-molecule Förster resonance energy Transfer spectroscopy (smFRET) I studied the eIF4B IDR as a monomer, demonstrating its non-uniform conformational behavior and flexibility, with different regions showing varying degrees of compactness and dynamics. Although the DRYG region is disordered, it is surprisingly compact, whereas the CTR is more expanded and flexible. These characteristics are largely dictated by the specific sequence composition of each subregion. smFRET also enabled probing eIF4B oligomerization behavior and associated protein conformational changes. Increasing the protein concentration above certain thresholds lead to eIF4B phase separation, which was studied by dedicated phase separation assays. Altogether, these experiments enabled mapping of the self-association landscape of eIF4B, which represents a complex transition from monomers to oligomers to condensed droplets. Interestingly, phosphomimetic mutations, such as S406E and S422E minimally affect eIF4B oligomerization, but considerably reduce the phase separation propensity.Finally, I used a combination of smFRET and NMR experiments to investigate eIF4B - RNA interactions, confirming that binding primarily involves the 332 to 457 region (overlapping with previously identified ARM region), which undergoes compaction upon RNA binding. The binding is ionic strength dependent, suggesting that electrostatic interactions are the main driving force, while sequence specificity towards guanosine-containing RNAs, indicates additional π-π stacking interactions. Importantly, the Ser406 and Ser422 phosphomimetic mutations within the RNA binding region significantly affect eIF4B-RNA binding affinity.Altogether, this work provides a detailed molecular understanding of conformational behavior of eIF4B and mechanisms of its interactions
Friedrich, Virginia, et Virginia Friedrich. « Analysis of HY5 phosphorylation and upstream signaling using phosphomimetics and double mutant analysis ». Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/624987.
Texte intégralChapitres de livres sur le sujet "Phosphomimetic mutants"
Yoshida, Daizo, et Akira Teramoto. « Signal Transduction in Pituitary Functions ». Dans Physiology. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.115042.
Texte intégralActes de conférences sur le sujet "Phosphomimetic mutants"
Ali Khajeh, Jahan, Moussoubaou Atchiba et Zimei Bu. « Abstract C298 : Conformational characterization of tumor suppressor protein Merlin and phosphomimetic Merlin(S518D) mutant in solution. » Dans Abstracts : AACR-NCI-EORTC International Conference : Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013 ; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-c298.
Texte intégral