Articles de revues sur le sujet « Physics, Low Temperature|Physics, Condensed Matter »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Physics, Low Temperature|Physics, Condensed Matter.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Physics, Low Temperature|Physics, Condensed Matter ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Feng, Yejun, R. Jaramillo, Jiyang Wang, Yang Ren et T. F. Rosenbaum. « Invited Article : High-pressure techniques for condensed matter physics at low temperature ». Review of Scientific Instruments 81, no 4 (avril 2010) : 041301. http://dx.doi.org/10.1063/1.3400212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hallock, Bob, et Mikko Paalanenn. « New developments in low temperature physics ». Journal of Physics : Condensed Matter 21, no 16 (20 mars 2009) : 160402. http://dx.doi.org/10.1088/0953-8984/21/16/160402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

von Keudell, A., et V. Schulz-von der Gathen. « Foundations of low-temperature plasma physics—an introduction ». Plasma Sources Science and Technology 26, no 11 (12 octobre 2017) : 113001. http://dx.doi.org/10.1088/1361-6595/aa8d4c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bauer, E., G. Hilscher, H. Kaldarar, H. Michor, E. W. Scheidt, P. Rogl, A. Gribanov et Y. Seropegin. « Formation and low temperature physics of ». Journal of Magnetism and Magnetic Materials 310, no 2 (mars 2007) : e73-e75. http://dx.doi.org/10.1016/j.jmmm.2006.10.273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Maris, Humphrey J. « Phonon physics and low temperature detectors of dark matter ». Journal of Low Temperature Physics 93, no 3-4 (novembre 1993) : 355–64. http://dx.doi.org/10.1007/bf00693446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Richardson, Robert C., Eric N. Smith et Robert C. Dynes. « Experimental Techniques in Condensed Matter Physics at Low Temperatures ». Physics Today 42, no 10 (octobre 1989) : 126–27. http://dx.doi.org/10.1063/1.2811189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Behringer, R. P. « Experimental Techniques in Condensed Matter Physics at Low Temperatures ». American Journal of Physics 57, no 3 (mars 1989) : 287. http://dx.doi.org/10.1119/1.16062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ponkratov, Vladimir V., Josef Friedrich, Jane M. Vanderkooi, Alexander L. Burin et Yuri A. Berlin. « Physics of Proteins at Low Temperature ». Journal of Low Temperature Physics 137, no 3/4 (novembre 2004) : 289–317. http://dx.doi.org/10.1023/b:jolt.0000049058.81275.72.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nucciotti, A. « Low Temperature Detectors for Neutrino Physics ». Journal of Low Temperature Physics 176, no 5-6 (20 décembre 2013) : 848–59. http://dx.doi.org/10.1007/s10909-013-1006-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kibble, T. W. B., et G. R. Pickett. « Introduction. Cosmology meets condensed matter ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 366, no 1877 (5 juin 2008) : 2793–802. http://dx.doi.org/10.1098/rsta.2008.0098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB (‘Cosmology in the Laboratory’) that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF (‘Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology’). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting ‘Cosmology meets condensed matter’, held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
11

MORI, Nobuo. « Development of High-Pressure Technique for Low Temperature Physics. Low Temperature and High Pressure Research for Solid State Physics. » Review of High Pressure Science and Technology 11, no 3 (2001) : 173–80. http://dx.doi.org/10.4131/jshpreview.11.173.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

GIULIANI, A. « CUORE : low-temperature techniques for neutrino physics ». Physica B : Condensed Matter 329-333 (mai 2003) : 1570–73. http://dx.doi.org/10.1016/s0921-4526(02)02299-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Gusev, Yuri Vladimirovich. « The quasi-low temperature behaviour of specific heat ». Royal Society Open Science 6, no 1 (janvier 2019) : 171285. http://dx.doi.org/10.1098/rsos.171285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
A new mathematical approach to condensed matter physics, based on the finite temperature field theory, was recently proposed. The field theory is a scale-free formalism; thus, it denies absolute values of thermodynamic temperature and uses dimensionless thermal variables, which are obtained with the group velocities of sound and the interatomic distance. This formalism was previously applied to the specific heat of condensed matter and predicted its fourth power of temperature behaviour at sufficiently low temperatures, which was tested by experimental data for diamond lattice materials. The range of temperatures with the quartic law varies for different materials; therefore, it is called the quasi-low temperature regime. The quasi-low temperature behaviour of specific heat is verified here with experimental data for the fcc lattice materials, silver chloride and lithium iodide. The conjecture that the fourth order behaviour is universal for all condensed matter systems has also supported the data for glassy matter: vitreous silica. This law is long known to hold for the bcc solid helium-4. The characteristic temperatures of the threshold of the quasi-low temperature regime are found for the studied materials. The scaling in the specific heat of condensed matter is expressed by the dimensionless parameter, which is explored with the data for several glasses. The explanation of the correlation of the ‘boson peak’ temperature with the shear velocity is proposed. The critique of the Debye theory of specific heat and the Born–von Karman model of the lattice dynamics is given.
14

Vidali, Gianfranco. « Cosmic Low Temperature Physics : Making Molecules on Stardust ». Journal of Low Temperature Physics 170, no 1-2 (29 septembre 2012) : 1–30. http://dx.doi.org/10.1007/s10909-012-0744-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kambara, Hiroshi, Tomohiro Matsui, Yasuhiro Niimi et Hiroshi Fukuyama. « Development of an ultra-low temperature scanning tunneling microscope and applications for low temperature physics ». Journal of Physics and Chemistry of Solids 66, no 8-9 (août 2005) : 1552–55. http://dx.doi.org/10.1016/j.jpcs.2005.05.074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tang, Shuang, et Mildred S. Dresselhaus. « Electronic properties of nano-structured bismuth-antimony materials ». J. Mater. Chem. C 2, no 24 (2014) : 4710–26. http://dx.doi.org/10.1039/c4tc00146j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Bismuth antimony (Bi1−xSbx) is one of the most important materials systems for fundamental materials science, condensed matter physics, low temperature thermoelectrics, infrared applications, and beyond.
17

UWATOKO, Yoshiya, Kazuyuki MATSUBAYASHI, Takehiko MATSUMOTO, Naofumi ASO, Masakazu NISHI, Tetsuya FUJIWARA, Masato HEDO et al. « Development of Palm Cubic Anvil Apparatus for Low Temperature Physics ». Review of High Pressure Science and Technology 18, no 3 (2008) : 230–36. http://dx.doi.org/10.4131/jshpreview.18.230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

TAKAHASHI, Hiroki. « Development of High-Pressure Technique for Low Temperature Physics. Low Temperature Measurements Using a Diamond Anvil Cell. » Review of High Pressure Science and Technology 11, no 3 (2001) : 195–202. http://dx.doi.org/10.4131/jshpreview.11.195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Vishnyakov et Dragan. « Coupling parameter for low-temperature plasma with condensed phase ». Condensed Matter Physics 10, no 2 (juin 2007) : 201. http://dx.doi.org/10.5488/cmp.10.2.201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

LARSON, M. « The science capability of the Low Temperature Microgravity Physics Facility ». Physica B : Condensed Matter 329-333 (mai 2003) : 1588–89. http://dx.doi.org/10.1016/s0921-4526(02)02304-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Fiorini, Ettore. « Application of Low Temperature Detectors in Physics : Yesterday, Today, Tomorrow ». Journal of Low Temperature Physics 179, no 5-6 (22 février 2014) : 277–90. http://dx.doi.org/10.1007/s10909-014-1118-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sasaki, Y., E. Hayata, T. Tanaka, H. Ito et T. Mizusaki. « Construction of ULT-MRI cryostat for ultra low temperature physics ». Journal of Low Temperature Physics 138, no 3-4 (février 2005) : 911–16. http://dx.doi.org/10.1007/s10909-005-2324-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

MORI, Nobuo. « Research Projects for Solid State Physics under High Pressure and Low Temperature. » Review of High Pressure Science and Technology 11, no 1 (2001) : 44–49. http://dx.doi.org/10.4131/jshpreview.11.44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Leiderer, Paul, Jukka Pekola et Neil Sullivan. « Special Issue : 50 Years of the Journal of Low Temperature Physics ». Journal of Low Temperature Physics 197, no 3-4 (27 septembre 2019) : 111–12. http://dx.doi.org/10.1007/s10909-019-02235-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Collin, E., T. Moutonet, J. S. Heron, O. Bourgeois, Yu M. Bunkov et H. Godfrin. « A Tunable Hybrid Electro-magnetomotive NEMS Device for Low Temperature Physics ». Journal of Low Temperature Physics 162, no 5-6 (28 octobre 2010) : 653–60. http://dx.doi.org/10.1007/s10909-010-0257-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jennings, B. K., et A. Schwenk. « Modern topics in theoretical nuclear physics ». Canadian Journal of Physics 85, no 3 (1 mars 2007) : 219–30. http://dx.doi.org/10.1139/p07-044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this review, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention on the strong connections to many-body atomic and condensed-matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics. PACS Nos.: 21.60.–n, 21.30.Fe
27

Kolev, St, G. J. M. Hagelaar, G. Fubiani et J.-P. Boeuf. « Physics of a magnetic barrier in low-temperature bounded plasmas : insight from particle-in-cell simulations ». Plasma Sources Science and Technology 21, no 2 (1 mars 2012) : 025002. http://dx.doi.org/10.1088/0963-0252/21/2/025002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kibble, T. W. B. « Phase Transitions and Topological Defects in the Early Universe ». Australian Journal of Physics 50, no 4 (1997) : 697. http://dx.doi.org/10.1071/p96076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Our present theories of particle physics and cosmology, taken together, suggest that very early in its history, the universe underwent a series of phase transitions, at which topological defects, similar to those formed in some condensed matter transitions, may have been created. Such defects, in particular cosmic strings, may survive long enough to have important observable effects in the universe today. Predicting these effects requires us to estimate the initial defect density and the way that defects subsequently evolve. Very similar problems arise in condensed matter systems, and recently it has been possible to test some of our ideas about the formation of defects using experiments with liquid helium-3 (in collaboration with the Low Temperature Laboratory in Helsinki). I shall review the present status of this theory.
29

Dakhnovskii, Yu I., A. A. Ovchinnikov et M. B. Semenov. « Low-temperature adiabatic chemical reactions in the condensed phase ». Molecular Physics 63, no 3 (20 février 1988) : 497–515. http://dx.doi.org/10.1080/00268978800100341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bonfanti, Silvia, et Giancarlo Jug. « On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics ». Journal of Low Temperature Physics 180, no 3-4 (19 mai 2015) : 214–37. http://dx.doi.org/10.1007/s10909-015-1311-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Collin, E., J. Kofler, J. S. Heron, O. Bourgeois, Yu M. Bunkov et H. Godfrin. « Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics ». Journal of Low Temperature Physics 158, no 3-4 (19 septembre 2009) : 678–84. http://dx.doi.org/10.1007/s10909-009-9960-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Skyba, P. « Notes on Measurement Methods of Mechanical Resonators Used in Low Temperature Physics ». Journal of Low Temperature Physics 160, no 5-6 (22 juin 2010) : 219–39. http://dx.doi.org/10.1007/s10909-010-0189-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Andersson, O., T. Matsuo, H. Suga et P. Ferloni. « Low-temperature heat capacity of urea ». International Journal of Thermophysics 14, no 1 (janvier 1993) : 149–58. http://dx.doi.org/10.1007/bf00522668.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

YEH, N. C., et A. D. BEYER. « UNCONVENTIONAL LOW-ENERGY EXCITATIONS OF CUPRATE SUPERCONDUCTORS ». International Journal of Modern Physics B 23, no 22 (10 septembre 2009) : 4543–77. http://dx.doi.org/10.1142/s021797920905403x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Recent development in the physics of high-temperature cuprate superconductivity is reviewed, with special emphasis on the phenomena of unconventional and non-universal low-energy excitations of hole- and electron-type cuprate superconductors and the possible physical origin. A phenomenology based on coexisting competing orders with cuprate superconductivity in the ground state appears to provide a consistent account for a wide range of experimental findings, including the presence (absence) of pseudogaps and Fermi arcs above the superconducting transition Tc in hole-type (electron-type) cuprate superconductors and the novel conductance modulations below Tc, particularly in the vortex state. Moreover, the competing order scenario is compatible with the possibility of pre-formed Cooper pairs and significant phase fluctuations in cuprate superconductors. The physical implications of the unified phenomenology and remaining open issues for the microscopic mechanism of cuprate superconductivity are discussed.
35

Cartwright, Julyan H. E. « Nonlinear dynamics determines the thermodynamic instability of condensed matter in vacuo ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 378, no 2174 (8 juin 2020) : 20190534. http://dx.doi.org/10.1098/rsta.2019.0534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Condensed matter is thermodynamically unstable in a vacuum. That is what thermodynamics tells us through the relation showing that condensed matter at temperatures above absolute zero always has non-zero vapour pressure. This instability implies that at low temperatures energy must not be distributed equally among atoms in the crystal lattice but must be concentrated. In dynamical systems such concentrations of energy in localized excitations are well known in the form of discrete breathers, solitons and related nonlinear phenomena. It follows that to satisfy thermodynamics such localized excitations must exist in systems of condensed matter at arbitrarily low temperature and as such the nonlinear dynamics of condensed matter is crucial for its thermodynamics. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.
36

Rehn, J., et R. Moessner. « Maxwell electromagnetism as an emergent phenomenon in condensed matter ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 374, no 2075 (28 août 2016) : 20160093. http://dx.doi.org/10.1098/rsta.2016.0093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The formulation of a complete theory of classical electromagnetism by Maxwell is one of the milestones of science. The capacity of many-body systems to provide emergent mini-universes with vacua quite distinct from the one we inhabit was only recognized much later. Here, we provide an account of how simple systems of localized spins manage to emulate Maxwell electromagnetism in their low-energy behaviour. They are much less constrained by symmetry considerations than the relativistically invariant electromagnetic vacuum, as their substrate provides a non-relativistic background with even translational invariance broken. They can exhibit rich behaviour not encountered in conventional electromagnetism. This includes the existence of magnetic monopole excitations arising from fractionalization of magnetic dipoles; as well as the capacity of disorder, by generating defects on the lattice scale, to produce novel physics, as exemplified by topological spin glassiness or random Coulomb magnetism. This article is part of the themed issue ‘Unifying physics and technology in light of Maxwell's equations’.
37

UWATOKO, Yoshiya. « Development of High-Pressure Technique for Low Temperature Physics. Magnetic Measurements under High Pressure. » Review of High Pressure Science and Technology 11, no 3 (2001) : 181–86. http://dx.doi.org/10.4131/jshpreview.11.181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

MÔRI, Nobuo. « Progress in Cubic-Anvil High Pressure Techniques for Low Temperature Solid State Physics Research ». Review of High Pressure Science and Technology 14, no 4 (2004) : 335–45. http://dx.doi.org/10.4131/jshpreview.14.335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Sorokin, L. M., L. P. Efimenko, A. E. Kalmykov et Yu I. Smolin. « Low-Dimensional Systems and Surface Physics ». Physics of the Solid State 46, no 5 (mai 2004) : 983–88. http://dx.doi.org/10.1134/1.1744979.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Andersson, Ove, Bertil Sundqvist et Gunnar Bäckström. « A low-temperature high-pressure apparatus with a temperature control system ». High Pressure Research 10, no 4 (août 1992) : 599–605. http://dx.doi.org/10.1080/08957959208202842.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ionin, A. A., I. V. Kochetov, A. P. Napartovich et N. N. Yuryshev. « Physics and engineering of singlet delta oxygen production in low-temperature plasma ». Journal of Physics D : Applied Physics 40, no 2 (5 janvier 2007) : R25—R61. http://dx.doi.org/10.1088/0022-3727/40/2/r01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Causa, Federica, Gabriele Gervasini, Andrea Uccello, Gustavo Granucci, Daria Ricci et Natale Rispoli. « Obtaining the unperturbed plasma potential in low-density, low-temperature plasmas ». Plasma Sources Science and Technology 30, no 4 (1 avril 2021) : 045008. http://dx.doi.org/10.1088/1361-6595/abef1b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kim, S. J., M.-A. Nicolet, R. S. Averback et D. Peak. « Low-temperature ion-beam mixing in metals ». Physical Review B 37, no 1 (1 janvier 1988) : 38–49. http://dx.doi.org/10.1103/physrevb.37.38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Takahashi, Mitsue, Yuko Hosokoshi, Hiroki Nakano, Tsuneaki Goto, Minoru Takahashi et Minoru Kinoshita. « Low-Temperature Magnetic Properties of Nitronyl Nitroxides ». Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 306, no 1 (octobre 1997) : 111–18. http://dx.doi.org/10.1080/10587259708044556.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sergeev, Gleb B. « Reactions in Solid Low Temperature Co-condensates ». Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 313, no 1 (mai 1998) : 155–66. http://dx.doi.org/10.1080/10587259808044269.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dmowski, L. H., J. Przybytek et E. Litwin-Staszewska. « Manganin sensors as low temperature pressure gauges ». High Pressure Research 19, no 1-6 (septembre 2000) : 353–57. http://dx.doi.org/10.1080/08957950008202577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Horibe, A., S. Fukusako et M. Yamada. « Surface tension of low-temperature aqueous solutions ». International Journal of Thermophysics 17, no 2 (mars 1996) : 483–93. http://dx.doi.org/10.1007/bf01443405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Takushima, M., et Y. Kajikawa. « Excess As in low-temperature grown InAs ». physica status solidi (c) 5, no 9 (juillet 2008) : 2781–83. http://dx.doi.org/10.1002/pssc.200779157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Winter, J. « Dust in fusion devices—a multi-faceted problem connecting high- and low-temperature plasma physics ». Plasma Physics and Controlled Fusion 46, no 12B (19 novembre 2004) : B583—B592. http://dx.doi.org/10.1088/0741-3335/46/12b/047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Bansal, Kanika, et Shouvik Datta. « Dielectric Response of Light Emitting Semiconductor Junction Diodes : Frequency and Temperature Domain Study ». MRS Proceedings 1635 (2014) : 49–54. http://dx.doi.org/10.1557/opl.2014.206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
ABSTRACTWe report a change in the dielectric response of AlGaInP based multi quantum well diodes with the onset of modulated light emission. Observed variation in junction capacitance and modulated light emission, with frequency and temperature, suggests participation of slow defect channels in fast radiative recombination dynamics. Our work establishes prominent connection between electrical and optical properties of light emitting diodes and provides a tool to investigate the interesting condensed matter physics of these structures. Our observations demand a generalized physical framework, beyond conventional models, to understand an active light emitting diode under charge carrier injection. We suggest that the low frequency response can compromise the performance of these diodes under high frequency applications. We also suggest how internal quantum well structure can affect modulated light output efficiency of the device.

Vers la bibliographie