Littérature scientifique sur le sujet « Physiological motion detection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Physiological motion detection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Physiological motion detection"
Wang, Liting, Xiaoqing Ding et Chi Fang. « Face live detection method based on physiological motion analysis ». Tsinghua Science and Technology 14, no 6 (décembre 2009) : 685–90. http://dx.doi.org/10.1016/s1007-0214(09)70135-x.
Texte intégralKrause, Bryan M., et Geoffrey M. Ghose. « Micropools of reliable area MT neurons explain rapid motion detection ». Journal of Neurophysiology 120, no 5 (1 novembre 2018) : 2396–409. http://dx.doi.org/10.1152/jn.00845.2017.
Texte intégralZhang, Long, Xuezhi Yang et Jing Shen. « Frequency Variability Feature for Life Signs Detection and Localization in Natural Disasters ». Remote Sensing 13, no 4 (21 février 2021) : 796. http://dx.doi.org/10.3390/rs13040796.
Texte intégralHan, Mianzhe, Yuki Todo et Zheng Tang. « An Artificial Visual System for Three Dimensional Motion Direction Detection ». Electronics 11, no 24 (13 décembre 2022) : 4161. http://dx.doi.org/10.3390/electronics11244161.
Texte intégralLuo, Linbo, Yuanjing Li, Haiyan Yin, Shangwei Xie, Ruimin Hu et Wentong Cai. « Crowd-Level Abnormal Behavior Detection via Multi-Scale Motion Consistency Learning ». Proceedings of the AAAI Conference on Artificial Intelligence 37, no 7 (26 juin 2023) : 8984–92. http://dx.doi.org/10.1609/aaai.v37i7.26079.
Texte intégralLiu, Hairen, et Wei Zhang. « Data Analysis of Athletes’ Physiological Indexes in Training and Competition Based on Wireless Sensor Network ». Journal of Sensors 2021 (18 septembre 2021) : 1–11. http://dx.doi.org/10.1155/2021/5923893.
Texte intégralGüttler, Jörg, Dany Bassily, Christos Georgoulas, Thomas Linner et Thomas Bock. « Unobtrusive Tremor Detection While Gesture Controlling a Robotic Arm ». Journal of Robotics and Mechatronics 27, no 1 (20 février 2015) : 103–4. http://dx.doi.org/10.20965/jrm.2015.p0103.
Texte intégralDOUKAS, CHARALAMPOS, et ILIAS MAGLOGIANNIS. « ADVANCED CLASSIFICATION AND RULES-BASED EVALUATION OF MOTION, VISUAL AND BIOSIGNAL DATA FOR PATIENT FALL INCIDENT DETECTION ». International Journal on Artificial Intelligence Tools 19, no 02 (avril 2010) : 175–91. http://dx.doi.org/10.1142/s0218213010000108.
Texte intégralVolpes, Gabriele, Simone Valenti, Giuseppe Genova, Chiara Barà, Antonino Parisi, Luca Faes, Alessandro Busacca et Riccardo Pernice. « Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals : Design and Preliminary Measurements ». Biosensors 14, no 4 (20 avril 2024) : 205. http://dx.doi.org/10.3390/bios14040205.
Texte intégralDharmansyah, Dhika. « LITERATURE REVIEW : DESIGN OF INTERNET OF HEALTH THINGS (IOHT) MODEL FOR FALL RISK DETECTION IN ELDERLY AT HOME ». Journal of Nursing Culture and Technology 1, no 1 (1 mai 2024) : 30–36. https://doi.org/10.70049/jnctech.v1i1.8.
Texte intégralThèses sur le sujet "Physiological motion detection"
Serieyssol, Alizée. « Correction des mouvements physiologiques sans appareillage externe en TEP : applications aux acquisitions à faible statistique pour la radioembolisation hépatique et la cardiologie ». Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0355.
Texte intégralPositron emission tomography (PET) is an essential imaging modality for diagnosis and therapeutic follow-up in oncology. Physiological motion can degrade image quality and affect the diagnostic accuracy and quantification of PET images. This research program focuses on the detection of physiological motion (respiration and cardiac beating) without the use of an external device for very specific clinical applications. Methods to compensate for these movements will be developed to reconstruct an image corrected for these effects. Two clinical applications have been identified to evaluate the implemented methods. The first concerns hepatic radioembolization based on 90Y PET imaging, which requires the development of methods to detect and correct for respiratory motion for data with very low counting statistics. The second is 18F-FDG cardiac PET imaging, involving the development of a method for the dual detection of respiratory and cardiac movements, as well as methods for compensating for these two physiological movements. The results obtained with the proposed detection methods are compared with those obtained with external devices: a bellow (46-265679G-1, GE HealthCare) for the respiratory signals and an electrocardiogram (ECG) for the cardiac signal. Two correction methods are proposed for hepatic radioembolization and their impact on post-treatment dosimetry was evaluated in comparison with results obtained without the use of correction methods. The first method developed consists in keeping only the quiescent phase of the respiratory cycle, while the second uses all the statistics, proposing a rigid registration between all the respiration phases. Two other methods have been implemented for cardiology, based on the estimation of 3D deformation vectors obtained from cardiac and respiratory triggers calculated with the proposed detection method. The first method estimates these deformation vectors through a rigid registration between the images of each respiratory cycle, while the second method uses the different volumes of the heart. In this method, 3D deformation vectors are calculated by identifying the end diastolic and end systolic volumes. The efficacity of these methods is evaluated by comparing the images obtained using these methods with the non-motion-corrected images, as well as with the image reconstructed with the correction method used in clinical routine on PET/CT cameras (Q.Static algorithm, General Electric HealthCare). The obtained results demonstrate a real improvement in terms of image quality, with better results for cardiological images than those obtained with the correction method used in clinical routine. Dosimetric results obtained with both correction methods for Yttrium-90 data show an increase of the tumor dose
Wu, Ping-Hsun, et 吳秉勳. « Design of Phase- and Self-Injection-Locked Radar and Its Application in Detection of Physiological Motions ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/05261518445379753062.
Texte intégral國立臺灣大學
電信工程學研究所
101
The phase- and self-injection-locked radar is presented in this dissertation for robust detection of physiological motions with high sensitivity. The innovative method injects the Doppler phase-modulated echo signal back into a phase-locked oscillator and obtains the baseband signal by directly sampling the voltage-controlled oscillator tuning voltage controlled by the phase-locked loop without any demodulation circuits. Phase noise analysis indicates that the proposed radar has the advantages of both the phase-locked oscillators and self-injection-locked oscillators to achieve superior signal-to-noise ratio gain against the low-frequency phase noise in the bandwidth containing the physiological motion information. Consequently, the proposed radar can serve for long-range detections with less transmitted power. In addition, this dissertation addresses the dc offset and the null point problems, which are two major challenging issues for conventional Doppler radar designs, in regard to reliable detection. The dc offset caused by clutter reflections and circuit imperfections is eliminated simply using a dual-tuning voltage-controlled oscillator without sophisticated clutter cancellation techniques. Analysis based on the classic injection locking equation shows that the dc offset can be removed without sensitivity degradation. Path-diversity transmission that switches between orthogonal self-injection-locked loops is employed to eliminate null points and reduce average transmitted power. Several prototype circuits are designed to justify the theory and design equations. Experiments confirm successful detection of physiological motions from a distance of 4 meters with −22 dBm average transmitted power.
Livres sur le sujet "Physiological motion detection"
Kautz, Dirk. Micro-iontophoretic studies on the physiological mechanism of auditory motion-direction : Detection in the inferior colliculus of the barn owl (Tyto alba). [s.l.] : [s.n.], 1997.
Trouver le texte intégralOffice, General Accounting. Air pollution : Improvements needed in detecting and preventing violations : report to the chairman, Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, House of Representatives. Washington, D.C : GAO, 1990.
Trouver le texte intégralChapitres de livres sur le sujet "Physiological motion detection"
Okawai, Hiroaki, et Mitsuru Takashima. « Physiological Detection of Satisfaction for Services by Body Motion Wave Revealing Unconscious Responses Reflecting Activities of Autonomic Nervous Systems ». Dans Serviceology for Smart Service System, 279–86. Tokyo : Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56074-6_31.
Texte intégralHemlathadhevi, A., Anu Disney D., Nishant Behar, Lalit Mohan Pant, C. M. Naveen Kumar et Madiha Tahreem. « Framework Towards Detection of Stress Level Through Classifying Physiological Signals Using Blockchain Technology ». Dans Advances in Computational Intelligence and Robotics, 403–16. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-7367-5.ch027.
Texte intégralGaggioli Andrea, Pioggia Giovanni, Tartarisco Gennaro, Baldus Giovanni, Ferro Marcello, Cipresso Pietro, Serino Silvia et al. « A System for Automatic Detection of Momentary Stress in Naturalistic Settings ». Dans Studies in Health Technology and Informatics. IOS Press, 2012. https://doi.org/10.3233/978-1-61499-121-2-182.
Texte intégralHIRAHARA, Makoto, et Takashi NAGANO. « A NEURAL NETWORK FOR VISUAL MOTION DETECTION THAT CAN EXPLAIN PSYCHOPHYSICAL AND PHYSIOLOGICAL PHENOMENA ». Dans Artificial Neural Networks, 1393–96. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-89178-5.50096-8.
Texte intégralS.M, Revathi, Srinivasan R, Balamurugan C.R et Kareemullah H. « Driver Stress Detection Based on IOT Motion Sensor Using Wearable Glove ». Dans Applications of Artificial Intelligence and Machine Learning in Healthcare. Technoarete Publishing, 2022. http://dx.doi.org/10.36647/aaimlh/2022.01.b1.ch002.
Texte intégralAbadi, Richard V. « Perception with Unstable Fixation ». Dans Advances in Understanding Mechanisms and Treatment of Infantile Forms of Nystagmus, 23–32. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195342185.003.0003.
Texte intégralSenthilkumar, Laushya, Joana M. Warnecke, Julian Bollmann et Thomas M. Deserno. « Robust In-Vehicle Signal Quality Assessment Using Multimodal Signal Fusion ». Dans Studies in Health Technology and Informatics. IOS Press, 2024. http://dx.doi.org/10.3233/shti240576.
Texte intégralNEGRINI Alberto, NEGRINI Stefano et SANTAMBROGIO Giorgio C. « Data Variability in the Analysis of Spinal Deformity : a Study Performed by means of the AUSCAN System ». Dans Studies in Health Technology and Informatics. IOS Press, 1995. https://doi.org/10.3233/978-1-60750-859-5-101.
Texte intégralRajamohana S. P., Dharani A., Anushree P., Santhiya B. et Umamaheswari K. « Machine Learning Techniques for Healthcare Applications ». Dans Advances in Social Networking and Online Communities, 236–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7522-1.ch012.
Texte intégralRajamohana S. P., Dharani A., Anushree P., Santhiya B. et Umamaheswari K. « Machine Learning Techniques for Healthcare Applications ». Dans Research Anthology on Medical Informatics in Breast and Cervical Cancer, 386–402. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-7136-4.ch021.
Texte intégralActes de conférences sur le sujet "Physiological motion detection"
Uddin, Md Taufeeq, et Shaun Canavan. « Synthesizing Physiological and Motion Data for Stress and Meditation Detection ». Dans 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 2019. http://dx.doi.org/10.1109/aciiw.2019.8925245.
Texte intégralPerdana, Rizky Naufal, Budhi Irawan, Casi Setianingsih, Dian Rezky Wulandari, Ivan Satrio Pamungkas, Fajri Nurfauzan, Adinda Ophelia Putri Sakinah et Muhammad Raihan Ramadhan. « Design of Smartdoor for Live Face Detection Based on Image Processing Using Physiological Motion Detection ». Dans 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). IEEE, 2022. http://dx.doi.org/10.1109/ismode56940.2022.10180411.
Texte intégralPeng, Zheng, Ilde Lorato, Xi Long, Rong-Hao Liang, Deedee Kommers, Peter Andriessen, Ward Cottaar, Sander Stuijk et Carola van Pul. « Body Motion Detection in Neonates Based on Motion Artifacts in Physiological Signals from a Clinical Patient Monitor ». Dans 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630133.
Texte intégralGupta, Sanskriti, et Rekha Vig. « Detection and Correction of Head Motion and Physiological Artifacts in BOLD fMRI : A Study ». Dans 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, 2019. http://dx.doi.org/10.1109/confluence.2019.8776963.
Texte intégralMa, Zheren, Brandon C. Li, Zeyu Yan, Dongmei Chen et Wei Li. « Wearable Sleepiness Detection Based on Characterization of Physiological Dynamics ». Dans ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9849.
Texte intégralRay, Arkaprova, Iman Habibagahi et Aydin Babakhani. « Fully Wireless and Batteryless Localization and Physiological Motion Detection System for Point-of-care Biomedical Applications ». Dans 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2022. http://dx.doi.org/10.1109/biocas54905.2022.9948647.
Texte intégralGalaup, Clement, Lama Séoud et Patrice Renaud. « Multimodal HCI : a review of computational tools and their relevance to the detection of sexual presence ». Dans Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004477.
Texte intégralPungu Mwange, Marie-Anne, Fabien Rogister et Luka Rukonic. « Measuring driving simulator adaptation using EDA ». Dans 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001489.
Texte intégralSilva, Leonardo, Rafael Lima, Giovani Lucafo, Italo Sandoval, Pedro Garcia Freitas et Otávio A. B. Penatti. « Photoplethysmography Signal Quality Assessment using Attentive-CNN Models ». Dans Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/sbcas.2024.2206.
Texte intégralKretzschmar, Florian, Matthias Beggiato et Alois Pichler. « Detection of Discomfort in Autonomous Driving via Stochastic Approximation ». Dans 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002437.
Texte intégral