Littérature scientifique sur le sujet « Plasmoids »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Plasmoids ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Plasmoids"
Christie, I. M., M. Petropoulou, L. Sironi et D. Giannios. « Interplasmoid Compton scattering and the Compton dominance of BL Lacs ». Monthly Notices of the Royal Astronomical Society 492, no 1 (9 décembre 2019) : 549–55. http://dx.doi.org/10.1093/mnras/stz3265.
Texte intégralSuzuki, Y., T. H. Watanabe, A. Kageyama, T. Sato et T. Hayashi. « Three-Dimensional Simulation Study of Plasmoid Injection into Magnetized Plasma ». Symposium - International Astronomical Union 188 (1998) : 209–10. http://dx.doi.org/10.1017/s0074180900114780.
Texte intégralHonkonen, I., M. Palmroth, T. I. Pulkkinen, P. Janhunen et A. Aikio. « On large plasmoid formation in a global magnetohydrodynamic simulation ». Annales Geophysicae 29, no 1 (14 janvier 2011) : 167–79. http://dx.doi.org/10.5194/angeo-29-167-2011.
Texte intégralPatel, Ritesh, Vaibhav Pant, Kalugodu Chandrashekhar et Dipankar Banerjee. « A statistical study of plasmoids associated with a post-CME current sheet ». Astronomy & ; Astrophysics 644 (décembre 2020) : A158. http://dx.doi.org/10.1051/0004-6361/202039000.
Texte intégralLemaire, J. « Plasmoid motion across a tangential discontinuity (with application to the magnetopause) ». Journal of Plasma Physics 33, no 3 (juin 1985) : 425–36. http://dx.doi.org/10.1017/s0022377800002592.
Texte intégralCerutti, Benoît, et Gwenael Giacinti. « Formation of giant plasmoids at the pulsar wind termination shock : A possible origin of the inner-ring knots in the Crab Nebula ». Astronomy & ; Astrophysics 656 (décembre 2021) : A91. http://dx.doi.org/10.1051/0004-6361/202142178.
Texte intégralMarkidis, S., P. Henri, G. Lapenta, A. Divin, M. V. Goldman, D. Newman et S. Eriksson. « Collisionless magnetic reconnection in a plasmoid chain ». Nonlinear Processes in Geophysics 19, no 1 (27 février 2012) : 145–53. http://dx.doi.org/10.5194/npg-19-145-2012.
Texte intégralDubowsky, Scott E., Amber N. Rose, Nick G. Glumac et Benjamin J. McCall. « Electrical Properties of Reversed-Polarity Ball Plasmoid Discharges ». Plasma 3, no 3 (29 juin 2020) : 92–102. http://dx.doi.org/10.3390/plasma3030008.
Texte intégralDvornikov, M. « Stable Langmuir solitons in plasma with diatomic ions ». Nonlinear Processes in Geophysics 20, no 4 (13 août 2013) : 581–88. http://dx.doi.org/10.5194/npg-20-581-2013.
Texte intégralNathanail, Antonios, Christian M. Fromm, Oliver Porth, Hector Olivares, Ziri Younsi, Yosuke Mizuno et Luciano Rezzolla. « Plasmoid formation in global GRMHD simulations and AGN flares ». Monthly Notices of the Royal Astronomical Society 495, no 2 (23 mai 2020) : 1549–65. http://dx.doi.org/10.1093/mnras/staa1165.
Texte intégralThèses sur le sujet "Plasmoids"
Berger, T., J. Konheiser, A. V. Anikeev, V. V. Prikhodko, P. A. Bagryansky, E. Yu Kolesnikov, E. I. Soldatkina, Yu A. Tsidulko, K. Noack et A. A. Lizunov. « Study of high temperature and high density plasmoids in axially symmetrical magnetic fields ». Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27870.
Texte intégralBerger, T., J. Konheiser, A. V. Anikeev, V. V. Prikhodko, P. A. Bagryansky, E. Yu Kolesnikov, E. I. Soldatkina, Yu A. Tsidulko, K. Noack et A. A. Lizunov. « Study of high temperature and high density plasmoids in axially symmetrical magnetic fields ». Forschungszentrum Dresden-Rossendorf, 2009. https://hzdr.qucosa.de/id/qucosa%3A21614.
Texte intégralGranier, Camille. « Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels ». Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4109.
Texte intégralMagnetic reconnection is a change of topology of the magnetic field, responsible for explosive release of magnetic energy in astrophysical plasmas, as in the case of magnetospheric substorms and coronal mass ejections, as well as in laboratory plasmas, which is the case of sawtooth crashes in tokamaks. In collisionless plasmas as, for instance, the magnetosphere and the solar wind, electron inertia becomes particularly relevant to drive reconnection at regions of intense localized current, denoted as current sheets. In these non-collisional environments, the temperature can often be anisotropic and effects at the electron scale on the reconnection process can become non-negligible.In this thesis, the stability of two-dimensional current sheets, with respect to reconnecting perturbations, in collisionless plasmas with a strong guide field is analysed on the basis of gyrofluid models assuming cold ions. These models can take into account an equilibrium temperature anisotropy,and a finite βe, a parameter corresponding to the ratio between equilibrium electron kinetic pressure and magnetic pressure.We derive and analyze a dispersion relation for the growth rate of collisionless tearing modes accounting for equilibrium electron temperature anisotropy. The analytical predictions are tested against numerical simulations, showing a very good quantitative agreement.In the isotropic case, accounting for finite βe effects, we observe a stabilization of the tearing growth rate when electron finite Larmor radius effects become relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects.We also investigate the marginal stability conditions of secondary current sheets, for the development of plasmoids, in collisionless plasmas. In the isotropic βe → 0 regime, we analyze the geometry that characterizes the reconnecting current sheet, and identify the conditions for which it is plasmoid unstable. Our study shows that plasmoids can be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime. Furthermore, we investigate the plasmoid formation comparing gyrofluid and gyrokinetic simulations.This made it possible to show that the effect of finite βe, promotes the plasmoid instability. Finally, we study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection
La riconnessione magnetica è un cambiamento nella topologia delcampo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmiastrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega neitokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento solare,l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessionein regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi noncollisionali,la temperatura può essere spesso anisotropa e gli effetti su scala elettronicasul processo di riconnessione possono diventare non trascurabili.In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali inplasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi cheassumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di temperaturadi equilibrio e di un βe finito. Quest’ultimo è un parametro corrispondente alrapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei moditearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilibriodegli elettroni. Le previsioni analitiche sono verificate mediante simulazioni numeriche,che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendoconto degli effetti di βe finito, si osserva una stabilizzazione del tasso di crescita delmodo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor deglielettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di accelerazione,simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.Studiamo anche le condizioni di stabilità marginale degli strati di corrente secondaria,per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropicocon βe → 0, analizziamo la geometria che caratterizza lo strato di corrente e identifichiamole condizioni in cui esso diventa instabile a causa di un’instabilità che generaplasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questocontesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispettoal regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando simulazionigirofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di βe promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusuraapplicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla distribuzionee conversione dell’energia durante la riconnessione
Hörbe, Mario Robert [Verfasser], Julia [Gutachter] Tjus et Garret [Gutachter] Cotter. « High-energy particle emission from plasmoids in jets of active galactic nuclei / Mario Robert Hörbe ; Gutachter : Julia Tjus, Garret Cotter ; Fakultät für Physik und Astronomie ». Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1233484176/34.
Texte intégralLin, Ling. « Optical Manipulation Using Planar/Patterned Metallo-dielectric Multilayer Structures ». Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1249.
Texte intégralKurth, Martin L. « Plasmonic nanofocusing and guiding structures for nano-optical sensor technology ». Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/118670/1/Martin_Kurth_Thesis.pdf.
Texte intégralConstant, Thomas J. « Optical excitation of surface plasmon polaritons on novel bigratings ». Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/9001.
Texte intégralLoiselet, Ophelliam. « Synthèse et caractérisation d’agrégats bimétalliques pour la magnéto-plasmonique ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1033/document.
Texte intégralFor several years condensed matter physicists have been interested in the optical and magnetic properties of metallic nanoparticles. Two properties remain largely studied: localized plasmon resonances and magnetic anisotropy at the nanoscale. These two effects resulting from very different electronic properties which are usually encountered in separate nanosystems. Since the 2000's, studies have shown that it is possible to benefit from these two characteristics in a single nanometric system. In this thesis, we will focus on the combination of magnetic and plasmonic properties in systems of size less than ten nanometers: bimetallic clusters of CoAg and CoAu synthesized physically under ultrahigh vacuum and embedded in a matrix (alumina and carbon). We will study the structure of these bimetallic clusters of different stoichiometries and the effect of their environment through the investigation of their optical, magnetic and electronic properties (by electron energy loss spectroscopy (EELS) on individual particles ). We will show the effect of the matrix, carbon or alumina, on the structure of the clusters as well as on their magnetic properties (moment by cluster, anisotropy). In optics we will also see the importance of stoichiometry between noble metal and cobalt on the phenomena of the damping and shifting of the plasmon resonance. Finally we will show the spatial distribution of surface plasmons on single particles by STEM-EELS measurements
Nagaraj, Nagaraj. « Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves ». Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115126/.
Texte intégralHettiarachchige, Chamanei Sandamali P. « The interaction of quantum dots with plasmons supported by metal waveguides ». Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/92278/1/Chamanei%20Sandamali_Hettiarachchige_Thesis.pdf.
Texte intégralLivres sur le sujet "Plasmoids"
Enoch, Stefan, et Nicolas Bonod, dir. Plasmonics. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28079-5.
Texte intégralFritzsche, Wolfgang, et Marc Lamy de la Chapelle, dir. Molecular Plasmonics. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527649686.
Texte intégralBozhevolnyi, Sergey I., Luis Martin-Moreno et Francisco Garcia-Vidal, dir. Quantum Plasmonics. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45820-5.
Texte intégralGric, Tatjana. Spoof Plasmons. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02023-0.
Texte intégralFedeli, Luca. High Field Plasmonics. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44290-7.
Texte intégralBecker, Jan. Plasmons as Sensors. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0.
Texte intégralservice), SpringerLink (Online, dir. Plasmons as Sensors. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Trouver le texte intégralTanabe, Katsuaki. Plasmonics for Hydrogen Energy. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88275-4.
Texte intégralGeddes, Chris D., dir. Reviews in Plasmonics 2016. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7.
Texte intégralGeddes, Chris D., dir. Reviews in Plasmonics 2017. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18834-4.
Texte intégralChapitres de livres sur le sujet "Plasmoids"
Moynihan, Matthew, et Alfred B. Bortz. « Plasmoids ». Dans Fusion's Promise, 153–74. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22906-0_7.
Texte intégralKlimov, A. I. « Vortex Plasmoids Created by High-Frequency Discharges ». Dans The Atmosphere and Ionosphere, 251–73. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2914-8_6.
Texte intégralMoldwin, Mark B., et W. J. Hughes. « A 2½-dimensional magnetic field model of plasmoids ». Dans Physics of Magnetic Flux Ropes, 663–68. Washington, D. C. : American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm058p0663.
Texte intégralHesse, Michael, et Joachim Birn. « Progress in the Study of Three-Dimensional Plasmoids ». Dans Geophysical Monograph Series, 55–70. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm062p0055.
Texte intégralScholer, M., et R. F. Lottermoser. « Hybrid Simulations of Magnetotail Reconnection : Plasmoids, the Post-Plasmoid Plasma Sheet, and Slow Mode Shocks ». Dans Substorms-4, 467–72. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_97.
Texte intégralRocca, Mario. « Surface Plasmons and Plasmonics ». Dans Springer Handbook of Surface Science, 531–56. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46906-1_18.
Texte intégralKarlický, Marian, et Miroslav Bárta. « Plasmoids in Solar Flares and Their Radio and X-ray Signatures ». Dans Multi-scale Dynamical Processes in Space and Astrophysical Plasmas, 49–59. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30442-2_6.
Texte intégralMukai, T., T. Yamamoto et S. Machida. « Dynamics and Kinetic Properties of Plasmoids and Flux Ropes : GEOTAIL Observations ». Dans New Perspectives on the Earth's Magnetotail, 117–37. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm105p0117.
Texte intégralKumar Raghuwanshi, Sanjeev, Santosh Kumar et Yadvendra Singh. « Introduction of Plasmons and Plasmonics ». Dans 2D Materials for Surface Plasmon Resonance-based Sensors, 1–40. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003190738-1.
Texte intégralMullan, D. J. « Coronal Heating by Nanoflares : Possible Evidence of Plasmoids in Radio Occultation Data ». Dans Mechanisms of Chromospheric and Coronal Heating, 637–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_107.
Texte intégralActes de conférences sur le sujet "Plasmoids"
Kadish, A., R. A. Nebel, W. R. Shanahan et P. Rosenau. « Plasmoids For Exoatmospheric Propagation ». Dans 1988 Los Angeles Symposium--O-E/LASE '88, sous la direction de Norman Rostoker. SPIE, 1988. http://dx.doi.org/10.1117/12.965106.
Texte intégralPopov, G., M. Orlov, N. Antropov, L. Gomilka, G. Diakonov, I. Krivonosov, G. Popov et al. « Parameters of plasmoids injected by PPT ». Dans 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2921.
Texte intégralChristie, Ian, Maria Petropoulou, Lorenzo Sironi et Dimitrios Giannios. « Blazar Variability from Plasmoids in Relativistic Reconnection ». Dans 7th International Fermi Symposium. Trieste, Italy : Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.312.0040.
Texte intégralNoack, S., A. Versteegh, B. Jüttner, G. Fussmann, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok et Marek J. Sadowski. « Analysis of Long-living Plasmoids at Atmospheric Pressure ». Dans PLASMA 2007 : International Conference on Research and Applications of Plasmas ; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications ; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909094.
Texte intégralMullan, D. J. « Acceleration of the solar wind : effects of plasmoids ». Dans Scientific basis for robotic exploration close to the sun. AIP, 1997. http://dx.doi.org/10.1063/1.51745.
Texte intégralYun-Tung Lau et John M. Finn. « Three-dimensional kinematic reconnection of plasmoids with nulls ». Dans Electromechanical Coupling of the Solar Atmosphere. AIP, 1992. http://dx.doi.org/10.1063/1.42878.
Texte intégralFedun, Victor. « OBTAINING OF VORTEX PLASMOIDS USING A PULSED ELECTROTHERMAL ACCELERATOR ». Dans WISSENSCHAFTLICHE ERGEBNISSE UND ERRUNGENSCHAFTEN : 2020. European Scientific Platform, 2020. http://dx.doi.org/10.36074/25.12.2020.v2.01.
Texte intégralKossyi, Igor, N. Berezhetskaya, S. Gritsinin, V. Kop'ev, Valerii Silakov, Natalya Tarasova et David Wie. « Long-Lived Plasmoids as Initiators of Combustion in Gas Mixtures ». Dans 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-836.
Texte intégralSlough, John. « Nuclear Propulsion based on Inductively Driven Liner Compression of Fusion Plasmoids ». Dans 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-961.
Texte intégralYang, Liping, Lei Zhang, Jiansen He, Hardi Peter, Chuanyi Tu, Linghua Wang et Xueshang Feng. « Excitation of magnetohydrodynamic waves by plasmoids ejection in the solar corona ». Dans VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES” : From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4943833.
Texte intégralRapports d'organisations sur le sujet "Plasmoids"
Samtaney, R., N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin et S. C. Cowley. Formation of Plasmoid Chains in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), septembre 2009. http://dx.doi.org/10.2172/965277.
Texte intégralHasselbeck, M. P., L. A. Schlie et D. Stalnaker. Coherent Plasmons in InSb. Fort Belvoir, VA : Defense Technical Information Center, janvier 2004. http://dx.doi.org/10.21236/ada430825.
Texte intégralAtwater, Harry A. Active Plasmonics, Option 3 Report. Fort Belvoir, VA : Defense Technical Information Center, mars 2010. http://dx.doi.org/10.21236/ada528631.
Texte intégralChang, A. Plasmonics-Enhanced Photocatalysis for Water Decontamination. Office of Scientific and Technical Information (OSTI), octobre 2019. http://dx.doi.org/10.2172/1573141.
Texte intégralIntrator, Thomas P. Magnetized shock studies for astrophysics using a plasmoid accelerator. Office of Scientific and Technical Information (OSTI), août 2013. http://dx.doi.org/10.2172/1090687.
Texte intégralCampbell, M. M., R. M. Clark et M. A. Mostrom. Simulation and theory of radial equilibrium of plasmoid propagation. Office of Scientific and Technical Information (OSTI), septembre 1989. http://dx.doi.org/10.2172/6607601.
Texte intégralBrandenburg, John, Gary Warren et Richard Worl. The Theory and Simulation of Plasmoid Formation and Propagation. Fort Belvoir, VA : Defense Technical Information Center, janvier 1990. http://dx.doi.org/10.21236/ada222048.
Texte intégralBabicheva, Viktoriia. Emerging Materials for Plasmonics, Metamaterials and Metasurfaces. Office of Scientific and Technical Information (OSTI), septembre 2019. http://dx.doi.org/10.2172/1561108.
Texte intégralCarpenter, Michael. Plasmonics Based Harsh Environment Compatible Chemical Sensors. Office of Scientific and Technical Information (OSTI), janvier 2012. http://dx.doi.org/10.2172/1051510.
Texte intégralBerezhiani, V. I., et S. M. Mahajan. Beat-wave generation of plasmons in semiconductor plasmas. Office of Scientific and Technical Information (OSTI), août 1995. http://dx.doi.org/10.2172/108115.
Texte intégral