Littérature scientifique sur le sujet « Polymodal logic »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Polymodal logic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Polymodal logic"

1

Bell, John L. "Polymodal Lattices and Polymodal Logic." Mathematical Logic Quarterly 42, no. 1 (1996): 219–33. http://dx.doi.org/10.1002/malq.19960420119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kracht, Marcus, and Frank Wolter. "Normal monomodal logics can simulate all others." Journal of Symbolic Logic 64, no. 1 (1999): 99–138. http://dx.doi.org/10.2307/2586754.

Texte intégral
Résumé :
AbstractThis paper shows that non-normal modal logics can be simulated by certain polymodal normal logics and that polymodal normal logics can be simulated by monomodal (normal) logics. Many properties of logics are shown to be reflected and preserved by such simulations. As a consequence many old and new results in modal logic can be derived in a straightforward way, sheding new light on the power of normal monomodal logic.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Goldblatt, R. "Algebraic polymodal logic: a survey." Logic Journal of IGPL 8, no. 4 (2000): 393–450. http://dx.doi.org/10.1093/jigpal/8.4.393.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Miyamoto, Sadaaki, Tetsuya Murai, and Yasuo Kudo. "A Family of Polymodal Systems and its Application to Generalized Possibility Measures and Multi-Rough Sets." Journal of Advanced Computational Intelligence and Intelligent Informatics 10, no. 5 (2006): 625–32. http://dx.doi.org/10.20965/jaciii.2006.p0625.

Texte intégral
Résumé :
Polymodal systems generally have large areas of applications to theoretical computer science including the theory of programming, while other applications are not yet fully explored. In this paper we consider a family of polymodal systems with the structure of lattices on the polymodal indices. After investigating theory of the polymodal systems such as the completeness, we study two applications. One is generalized possibility measures in which lattice-valued measures are proposed and relations with the ordinary possibility and necessity measures are uncovered. Second application is considera
Styles APA, Harvard, Vancouver, ISO, etc.
5

Alekseev, P. A., and M. I. Golovanov. "Admissible inference rules for polymodal logicS5 n C." Algebra and Logic 36, no. 5 (1997): 281–87. http://dx.doi.org/10.1007/bf02671605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Berger, Gerald, Lev D. Beklemishev, and Hans Tompits. "A many-sorted variant of Japaridze’s polymodal provability logic." Logic Journal of the IGPL 26, no. 5 (2018): 505–38. http://dx.doi.org/10.1093/jigpal/jzy012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

MIYAMOTO, Sadaaki. "Polymodal Logic and Application to Systems with Uncertainties of Risks." Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 15, no. 1 (2003): 73–77. http://dx.doi.org/10.3156/jsoft.15.73.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dashkov, E. V. "On the positive fragment of the polymodal provability logic GLP." Mathematical Notes 91, no. 3-4 (2012): 318–33. http://dx.doi.org/10.1134/s0001434612030029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fernández-Duque, David, and Joost J. Joosten. "Models of transfinite provability logic." Journal of Symbolic Logic 78, no. 2 (2013): 543–61. http://dx.doi.org/10.2178/jsl.7802110.

Texte intégral
Résumé :
AbstractFor any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ < Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted . Later, Icard defined a topological model for which is very closely related to Ignatiev's.In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model and a topological model , and show that is sound
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wolter, Frank, and Michael Zakharyaschev. "Decidable fragments of first-order modal logics." Journal of Symbolic Logic 66, no. 3 (2001): 1415–38. http://dx.doi.org/10.2307/2695115.

Texte intégral
Résumé :
AbstractThe paper considers the setof first-order polymodal formulas the modal operators in which can be applied to subformulas of at most one free variable. Using a mosaic technique, we prove a general satisfiability criterion for formulas in, which reduces the modal satisfiability to the classical one. The criterion is then used to single out a number of new, in a sense optimal, decidable fragments of various modal predicate logics.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Polymodal logic"

1

"Polymodal logics with inequality." In Specifying Message Passing and Time-Critical Systems with Temporal Logic. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-56283-4_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

"Chapter 6 Reducing polymodal logic to monomodal logic." In Studies in Logic and the Foundations of Mathematics. Elsevier, 1999. http://dx.doi.org/10.1016/s0049-237x(99)80008-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!