Littérature scientifique sur le sujet « Post-hoc explainabil »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Post-hoc explainabil ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Post-hoc explainabil"
de-la-Rica-Escudero, Alejandra, Eduardo C. Garrido-Merchán, and María Coronado-Vaca. "Explainable post hoc portfolio management financial policy of a Deep Reinforcement Learning agent." PLOS ONE 20, no. 1 (2025): e0315528. https://doi.org/10.1371/journal.pone.0315528.
Texte intégralViswan, Vimb, Shaffi Noushath, and Mahmud Mufti. "Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer's disease detection." Brain Informatics 11 (April 5, 2024): A10. https://doi.org/10.1186/s40708-024-00222-1.
Texte intégralAlvanpour, Aneseh, Cagla Acun, Kyle Spurlock, et al. "Comparative Analysis of Post Hoc Explainable Methods for Robotic Grasp Failure Prediction." Electronics 14, no. 9 (2025): 1868. https://doi.org/10.3390/electronics14091868.
Texte intégralZednik, Carlos, and Hannes Boelsen. "Scientific Exploration and Explainable Artificial Intelligence." Minds and Machines 32, no. 1 (2022): 219–39. http://dx.doi.org/10.1007/s11023-021-09583-6.
Texte intégralLarriva-Novo, Xavier, Luis Pérez Miguel, Victor A. Villagra, Manuel Álvarez-Campana, Carmen Sanchez-Zas, and Óscar Jover. "Post-Hoc Categorization Based on Explainable AI and Reinforcement Learning for Improved Intrusion Detection." Applied Sciences 14, no. 24 (2024): 11511. https://doi.org/10.3390/app142411511.
Texte intégralMetsch, Jacqueline Michelle, and Anne-Christin Hauschild. "BenchXAI: Comprehensive benchmarking of post-hoc explainable AI methods on multi-modal biomedical data." Computers in Biology and Medicine 191 (June 2025): 110124. https://doi.org/10.1016/j.compbiomed.2025.110124.
Texte intégralArjunan, Gopalakrishnan. "Implementing Explainable AI in Healthcare: Techniques for Interpretable Machine Learning Models in Clinical Decision-Making." International Journal of Scientific Research and Management (IJSRM) 9, no. 05 (2021): 597–603. http://dx.doi.org/10.18535/ijsrm/v9i05.ec03.
Texte intégralJishnu, Setia. "Explainable AI: Methods and Applications." Explainable AI: Methods and Applications 8, no. 10 (2023): 5. https://doi.org/10.5281/zenodo.10021461.
Texte intégralSarma Borah, Proyash Paban, Devraj Kashyap, Ruhini Aktar Laskar, and Ankur Jyoti Sarmah. "A Comprehensive Study on Explainable AI Using YOLO and Post Hoc Method on Medical Diagnosis." Journal of Physics: Conference Series 2919, no. 1 (2024): 012045. https://doi.org/10.1088/1742-6596/2919/1/012045.
Texte intégralYang, Huijin, Seon Ha Baek, and Sejoong Kim. "Explainable Prediction of Overcorrection in Severe Hyponatremia: A Post Hoc Analysis of the SALSA Trial." Journal of the American Society of Nephrology 32, no. 10S (2021): 377. http://dx.doi.org/10.1681/asn.20213210s1377b.
Texte intégralThèses sur le sujet "Post-hoc explainabil"
SEVESO, ANDREA. "Symbolic Reasoning for Contrastive Explanations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/404830.
Texte intégralRadulovic, Nedeljko. "Post-hoc Explainable AI for Black Box Models on Tabular Data." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT028.
Texte intégralChapitres de livres sur le sujet "Post-hoc explainabil"
Kamath, Uday, and John Liu. "Post-Hoc Interpretability and Explanations." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_5.
Texte intégralDeshpande, Saurabh, Rahee Walambe, Ketan Kotecha, and Marina Marjanović Jakovljević. "Post-hoc Explainable Reinforcement Learning Using Probabilistic Graphical Models." In Communications in Computer and Information Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95502-1_28.
Texte intégralCánovas-Segura, Bernardo, Antonio Morales, Antonio López Martínez-Carrasco, et al. "Exploring Antimicrobial Resistance Prediction Using Post-hoc Interpretable Methods." In Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37446-4_8.
Texte intégralStevens, Alexander, Johannes De Smedt, and Jari Peeperkorn. "Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring." In Lecture Notes in Business Information Processing. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_15.
Texte intégralAgiollo, Andrea, Luciano Cavalcante Siebert, Pradeep Kumar Murukannaiah, and Andrea Omicini. "The Quarrel of Local Post-hoc Explainers for Moral Values Classification in Natural Language Processing." In Explainable and Transparent AI and Multi-Agent Systems. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40878-6_6.
Texte intégralNeubig, Stefan, Daria Cappey, Nicolas Gehring, Linus Göhl, Andreas Hein, and Helmut Krcmar. "Visualizing Explainable Touristic Recommendations: An Interactive Approach." In Information and Communication Technologies in Tourism 2024. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58839-6_37.
Texte intégralMota, Bruno, Pedro Faria, Juan Corchado, and Carlos Ramos. "Explainable Artificial Intelligence Applied to Predictive Maintenance: Comparison of Post-Hoc Explainability Techniques." In Communications in Computer and Information Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63803-9_19.
Texte intégralOliveira, Pedro, Francisco Franco, Afonso Bessa, Dalila Durães, and Paulo Novais. "Employing Explainable AI Techniques for Air Pollution: An Ante-Hoc and Post-Hoc Approach in Dioxide Nitrogen Forecasting." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-77731-8_30.
Texte intégralPandey, Chetraj, Rafal A. Angryk, Manolis K. Georgoulis, and Berkay Aydin. "Explainable Deep Learning-Based Solar Flare Prediction with Post Hoc Attention for Operational Forecasting." In Discovery Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45275-8_38.
Texte intégralNizam, Tasleem, Sherin Zafar, Siddhartha Sankar Biswas, and Imran Hussain. "Investigating the Quality of Explainable Artificial Intelligence: A Survey on Various Techniques of Post hoc." In Intelligent Strategies for ICT. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1260-1_13.
Texte intégralActes de conférences sur le sujet "Post-hoc explainabil"
Xu, Kerui, Jun Xu, Sheng Gao, Si Li, Jun Guo, and Ji-Rong Wen. "A Tag-Based Post-Hoc Framework for Explainable Conversational Recommendation." In ICTIR '22: The 2022 ACM SIGIR International Conference on the Theory of Information Retrieval. ACM, 2022. http://dx.doi.org/10.1145/3539813.3545120.
Texte intégralDeb, Kiron, Xuan Zhang, and Kevin Duh. "Post-Hoc Interpretation of Transformer Hyperparameters with Explainable Boosting Machines." In Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP. Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.blackboxnlp-1.5.
Texte intégralSenevirathna, Thulitha, Bartlomiej Siniarski, Madhusanka Liyanage, and Shen Wang. "Deceiving Post-Hoc Explainable AI (XAI) Methods in Network Intrusion Detection." In 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC). IEEE, 2024. http://dx.doi.org/10.1109/ccnc51664.2024.10454633.
Texte intégralKenny, Eoin M., Eoin Delaney, and Mark T. Keane. "Advancing Post-Hoc Case-Based Explanation with Feature Highlighting." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/48.
Texte intégralDemir, Caglar, and Axel-Cyrille Ngonga Ngomo. "Neuro-Symbolic Class Expression Learning." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/403.
Texte intégralČyras, Kristijonas, Antonio Rago, Emanuele Albini, Pietro Baroni, and Francesca Toni. "Argumentative XAI: A Survey." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/600.
Texte intégralAryal, Saugat, and Mark T. Keane. "Even If Explanations: Prior Work, Desiderata & Benchmarks for Semi-Factual XAI." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/732.
Texte intégralThendral Surendranath, Ephina. "Explainable Hybrid Machine Learning Technique for Healthcare Service Utilization." In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004837.
Texte intégralSattarzadeh, Sam, Mahesh Sudhakar, and Konstantinos N. Plataniotis. "SVEA: A Small-scale Benchmark for Validating the Usability of Post-hoc Explainable AI Solutions in Image and Signal Recognition." In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021. http://dx.doi.org/10.1109/iccvw54120.2021.00462.
Texte intégralMorais, Lucas Rabelo de Araujo, Gabriel Arnaud de Melo Fragoso, Teresa Bernarda Ludermir, and Claudio Luis Alves Monteiro. "Explainable AI For the Brazilian Stock Market Index: A Post-Hoc Approach to Deep Learning Models in Time-Series Forecasting." In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/eniac.2024.244444.
Texte intégral