Littérature scientifique sur le sujet « Precision health »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Precision health ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Precision health"
Olstad, Dana Lee, et Lynn McIntyre. « Reconceptualising precision public health ». BMJ Open 9, no 9 (septembre 2019) : e030279. http://dx.doi.org/10.1136/bmjopen-2019-030279.
Texte intégralGambhir, Sanjiv Sam, T. Jessie Ge, Ophir Vermesh et Ryan Spitler. « Toward achieving precision health ». Science Translational Medicine 10, no 430 (28 février 2018) : eaao3612. http://dx.doi.org/10.1126/scitranslmed.aao3612.
Texte intégralten Have, Henk, et Bert Gordijn. « Precision in health care ». Medicine, Health Care and Philosophy 21, no 4 (9 octobre 2018) : 441–42. http://dx.doi.org/10.1007/s11019-018-9870-x.
Texte intégralIelapi, Nicola, Michele Andreucci, Noemi Licastro, Teresa Faga, Raffaele Grande, Gianluca Buffone, Sabrina Mellace, Paolo Sapienza et Raffaele Serra. « Precision Medicine and Precision Nursing : The Era of Biomarkers and Precision Health ». International Journal of General Medicine Volume 13 (décembre 2020) : 1705–11. http://dx.doi.org/10.2147/ijgm.s285262.
Texte intégralKhoury, Muin J., Michael F. Iademarco et William T. Riley. « Precision Public Health for the Era of Precision Medicine ». American Journal of Preventive Medicine 50, no 3 (mars 2016) : 398–401. http://dx.doi.org/10.1016/j.amepre.2015.08.031.
Texte intégralBranca, Malorye Allison. « TOP PRECISION MEDICINE HEALTH SYSTEMS ». Clinical OMICs 8, no 6 (1 novembre 2021) : 32–36. http://dx.doi.org/10.1089/clinomi.08.06.21.
Texte intégralDickson, Victoria Vaughan, et Gail D'Eramo Melkus. « Precision Health in Cardiovascular Conditions ». Journal of Cardiovascular Nursing 37, no 1 (janvier 2022) : 56–57. http://dx.doi.org/10.1097/jcn.0000000000000879.
Texte intégralCHEN, Shu-Ching. « Precision Health in Cancer Care ». Journal of Nursing Research 30, no 2 (avril 2022) : e194. http://dx.doi.org/10.1097/jnr.0000000000000486.
Texte intégralKellogg, Ryan A., Jessilyn Dunn et Michael P. Snyder. « Personal Omics for Precision Health ». Circulation Research 122, no 9 (27 avril 2018) : 1169–71. http://dx.doi.org/10.1161/circresaha.117.310909.
Texte intégralReich, Brian J., et Murali Haran. « Precision maps for public health ». Nature 555, no 7694 (28 février 2018) : 32–33. http://dx.doi.org/10.1038/d41586-018-02096-w.
Texte intégralThèses sur le sujet "Precision health"
Sloan-Heggen, Christina Marie. « Precision health and deafness–optimizing genetic diagnosis ». Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6287.
Texte intégralManrai, Arjun Kumar. « Statistical foundations for precision medicine ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97826.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references.
Physicians must often diagnose their patients using disease archetypes that are based on symptoms as opposed to underlying pathophysiology. The growing concept of "precision medicine" addresses this challenge by recognizing the vast yet fractured state of biomedical data, and calls for a patient-centered view of data in which molecular, clinical, and environmental measurements are stored in large shareable databases. Such efforts have already enabled large-scale knowledge advancement, but they also risk enabling large-scale misuse. In this thesis, I explore several statistical opportunities and challenges central to clinical decision-making and knowledge advancement with these resources. I use the inherited heart disease hypertrophic cardiomyopathy (HCM) to illustrate these concepts. HCM has proven tractable to genomic sequencing, which guides risk stratification for family members and tailors therapy for some patients. However, these benefits carry risks. I show how genomic misclassifications can disproportionately affect African Americans, amplifying healthcare disparities. These findings highlight the value of diverse population sequencing data, which can prevent variant misclassifications by identifying ancestry informative yet clinically uninformative markers. As decision-making for the individual patient follows from knowledge discovery by the community, I introduce a new quantity called the "dataset positive predictive value" (dPPV) to quantify reproducibility when many research teams separately mine a shared dataset, a growing practice that mirrors genomic testing in scale but not synchrony. I address only a few of the many challenges of delivering sound interpretation of genetic variation in the clinic and the challenges of knowledge discovery with shared "big data." These examples nonetheless serve to illustrate the need for grounded statistical approaches to reliably use these powerful new resources.
by Arjun Kumar Manrai.
Ph. D.
Eliot, Trevor G. « Provider precision labs healthcare analytics and decision support ». Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111177.
Texte intégralThe healthcare industry is undergoing a shift due to changes in revenue cycles and therefore delivery models. This shift is causing horizontal integration among providers and a subsequent assumption of risk that behooves them to operate similar to a payer. Analytics, while used predominately by healthcare payers in the past, will now be applicable to providers of care. This opens the door to a niche consulting firm that can provide these services effectively and affordably. Provider Precision Labs is an idea for a company that can render payer-like services on the scale of regional provider groups but at a manageable cost to the owner and operator.
GALASSO, ILARIA. « PRECISION MEDICINE IN SOCIETY : PROMISES, EXPECTATIONS AND CONCERNS AROUND SOCIAL AND HEALTH EQUITY ». Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/609264.
Texte intégralArnold, Matthias [Verfasser]. « Linking Precision Medicine to Public Health : An Economic Perspective on Mammography Screening / Matthias Arnold ». München : Verlag Dr. Hut, 2018. http://d-nb.info/1168534283/34.
Texte intégralMukwaya, Jovia Namugerwa. « An Investigation of Semantic Interoperability with EHR systems for Precision Dosing ». Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279143.
Texte intégralPicard, Yani. « Improving the precision and accuracy of Monte Carlo simulation in positron emission tomography ». Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68241.
Texte intégralFurthermore, simulations of PET systems waste considerable time generating events which will never be detected. For events in which the original photons are usually directed towards the detectors, the efficiency of the simulations was improved by giving the photons additional chances of being detected. For simulation programs which cascade the simulation process into source, collimation, and detection phases such as PETSIM, the additional detections resulted in an improvement in the simulation precision without requiring larger files of events from the source/phantom phase of the simulation. This also reduced the simulation time since fewer positron annihilations were needed to achieve a given statistical precision. This was shown to be a useful improvement over conventional Monte Carlo simulations of PET systems.
Krieger, Glenn. « Cephalometric regional superimpositions -- digital vs. analog accuracy and precision : 1. the maxilla ». Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/58.
Texte intégralBuran, Bradley N. (Bradley Nicholas). « Precision and reliability of cochlear nerve response in mice lacking functional synaptic ribbons ». Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54454.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 87-99).
Synaptic ribbons are electron-dense structures surrounded by vesicles and anchored to the presynaptic membrane of photoreceptors, retinal bipolar cells and hair cells. Ribbon synapses are characterized by sustained exocytosis that is graded with stimulus intensity and can achieve high release rates. Leading hypotheses implicate the ribbon in maintenance of a large readily releasable pool (RRP) of presynaptic vesicles which enables rapid and precisely-timed exocytosis that supports instantaneous discharge rates of well over 1000 spikes per second. To gain insight into the function of this specialized presynaptic molecular machinery, we characterized the response properties of single auditory nerve (AN) fibers in a mouse with targeted deletion of a presynaptic scaffolding gene, bassoon, in which ribbons are no longer anchored to the active zone. Since each mammalian AN fiber usually receives input from a single inner hair cell active zone to which a single ribbon is typically anchored, single-fiber recordings from bassoon mutants and control mice offer a sensitive functional metric of the contribution of individual ribbons to neural function. Response properties of mutant AN fibers were similar, in many respects, to wild-type. Spike intervals remained irregular, thresholds were unaffected, dynamic range was unchanged, spike synchronization to
(cont.) stimulus phase was unimpaired, the time course of post-onset adaptation and recovery from adaptation were normal, and the ability to sustain discharge throughout a long-duration stimulus was unaffected. These data indicate that the presynaptic mechanisms which regulate precise timing of exocytosis, graded release rates and sustained neurotransmitter release were not impaired by loss of the ribbon. However, reductions were seen in spontaneous and sound-evoked AN fiber discharge rates, coinciding with an increased variance of first spike timing to stimulus onset. Unlike fibers from wild-type mice, mutants failed to show increased peak rate as stimulus onset became more abrupt. The reduction of peak rates and increased first spike variance likely result from degraded reliability of discharge to stimulus onset via a mechanism such as reduced RRP size. Thus, the ribbon appears to support a large RRP that enables the rapid onset rates necessary for the auditory system to resolve stimulus features key for many perceptual tasks.
by Bradley N. Buran.
Ph.D.
McCaffrey, Kevin. « Cephalometric regional superimpositions -- digital vs. analog accuracy and precision : 2. the mandible ». Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/hpd_cdm_stuetd/19.
Texte intégralLivres sur le sujet "Precision health"
Shaban-Nejad, Arash, et Martin Michalowski, dir. Precision Health and Medicine. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24409-5.
Texte intégralZhao, Yichuan, et Ding-Geng Chen, dir. Statistics in Precision Health. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-50690-1.
Texte intégralPanesar, Arjun. Precision Health and Artificial Intelligence. Berkeley, CA : Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9162-7.
Texte intégral1949-, Burke Ed, dir. Precision heart rate training. Champaign, IL : Human Kinetics, 1998.
Trouver le texte intégralFrench, Melissa G., dir. Relevance of Health Literacy to Precision Medicine. Washington, D.C. : National Academies Press, 2016. http://dx.doi.org/10.17226/23538.
Texte intégralAlper, Joe, dir. Relevance of Health Literacy to Precision Medicine. Washington, D.C. : National Academies Press, 2016. http://dx.doi.org/10.17226/23592.
Texte intégralMaglaveras, Nicos, Ioanna Chouvarda et Paulo de Carvalho, dir. Precision Medicine Powered by pHealth and Connected Health. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7419-6.
Texte intégralBurke, Edmund R. Precision heart rate training : For maximum fitness and performance. Champaign, IL : Human Kinetics, 1998.
Trouver le texte intégralAlper, Joe, Andrew Bremer et Anne Linn, dir. Leveraging Advances in Remote Geospatial Technologies to Inform Precision Environmental Health Decisions. Washington, D.C. : National Academies Press, 2021. http://dx.doi.org/10.17226/26265.
Texte intégralAdebayo, Derin, et Aramide Okafor. Hydrogen sulfide : Sources, detection, and health hazards. Hauppauge, N.Y : Nova Science Publishers, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Precision health"
Yu, Feliciano B. « Precision Health ». Dans Clinical Informatics Study Guide, 391–412. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93765-2_26.
Texte intégralTobin, John. « Children’s Right to Health ». Dans Precision Manufacturing, 1–22. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-3182-3_12-1.
Texte intégralBruzelius, Emilie, et James H. Faghmous. « Precision Population Health ». Dans Encyclopedia of Big Data, 757–60. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-32010-6_515.
Texte intégralBruzelius, Emilie, et James H. Faghmous. « Precision Population Health ». Dans Encyclopedia of Big Data, 1–4. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-32001-4_515-1.
Texte intégralFlahault, Antoine. « Precision Global Health ». Dans Handbook of Global Health, 1667–98. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45009-0_70.
Texte intégralFlahault, Antoine. « Precision Global Health ». Dans Handbook of Global Health, 1–32. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-05325-3_70-1.
Texte intégralPolley, Eric, et Yingdong Zhao. « Precision Trials Informatics ». Dans Health Informatics, 215–22. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18626-5_15.
Texte intégralLewis, Duncan, Ria Deakin et Frances-Louise McGregor. « Workplace Bullying, Disability and Chronic Ill Health ». Dans Precision Manufacturing, 1–29. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5338-2_15-1.
Texte intégralTarabella, Angela, Leonello Trivelli et Andrea Apicella. « Precision Agriculture ». Dans SpringerBriefs in Food, Health, and Nutrition, 79–85. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-23811-1_6.
Texte intégralAlvarez, Maria Josefina Ruiz. « Precision Public Health Perspectives ». Dans Precision Medicine in Clinical Practice, 113–27. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5082-7_7.
Texte intégralActes de conférences sur le sujet "Precision health"
Jumlesha, Shaik, S. Hrushikesava Raju, S. Adinarayna, U.Sesadri, Nabanita Choudhury et Vijaya Chandra Jadala. « Precision Health : Maximizing Well-being with IAHN Integration ». Dans 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), 1623–30. IEEE, 2024. https://doi.org/10.1109/icacrs62842.2024.10841793.
Texte intégralFerraro, Simona, Anilkumar Dave, Dario Cattaneo, Gianvincenzo Zuccotti, Alessia Mauri, Martina Tosi, Elvira Verduci et al. « Precision Health for Children Takes First Steps in Space ». Dans IAF/IAA Space Life Sciences Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 98–127. Paris, France : International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078355-0013.
Texte intégralSaranya, V. S., Saikiran Mangali, K. Srinija, Galeiah Medabalimi, Meena Devi, R. Venkata Ramana N et Ajanthaa Lakkshmanan. « Image-Based Soil Health Analysis Using Deep Learning for Precision Agriculture ». Dans 2024 9th International Conference on Communication and Electronics Systems (ICCES), 1206–14. IEEE, 2024. https://doi.org/10.1109/icces63552.2024.10860230.
Texte intégralSharma, Deepak, M. Chitra Devi, Vivek Veeraiah, Manisha Kasar, Deepshikha Aggarwal et Tripti Sharma. « AI-Driven Precision Agriculture : Techniques for Monitoring Crop Health and Yield Optimization ». Dans 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), 1794–800. IEEE, 2024. https://doi.org/10.1109/ictacs62700.2024.10840749.
Texte intégralGaikwad, Shreeraj, Pratik Awatade, Yadnesh Sirdeshmukh et Chandan Prasad. « Precision Nutrition through Smart Wearable Technology Tailored Solutions for Personalized Health Enhancement ». Dans 2024 IEEE International Conference on Contemporary Computing and Communications (InC4), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/inc460750.2024.10649111.
Texte intégralKhatri, Parul, Archana Sharma et Payal. « An Optimized Machine Learning-Based Stroke Prediction : Enhancing Precision Medicine and Public Health ». Dans 2024 International Conference on Data Science and Network Security (ICDSNS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icdsns62112.2024.10690944.
Texte intégralMakhija, Aria. « Leveraging ResNet-50 for Precision Toxicity Classification in Plants : A Vision-Based Approach to Safeguard Public Health ». Dans 2024 E-Health and Bioengineering Conference (EHB), 1–6. IEEE, 2024. https://doi.org/10.1109/ehb64556.2024.10805656.
Texte intégralLi, Yan, et Yuejian Chen. « RM-YOLOv8-n : A Lightweight and High-precision Network for Rail Surface Defect Detection ». Dans 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing), 1–6. IEEE, 2024. https://doi.org/10.1109/phm-beijing63284.2024.10874487.
Texte intégralSunil, Tummapudi, Krishnagandhi Pachiappan, S. Senthilrajan, Y. Nagendar, Renato R. Maaliw et C. Pavin. « Integration of Convolutional Neural Networks for Real-Time Monitoring of Soil Health in Precision Agriculture ». Dans 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1532–38. IEEE, 2024. https://doi.org/10.1109/iceca63461.2024.10800813.
Texte intégralWang, S. X., et J. Lee. « Magneto-nanosensors for precision medicine and precision health ». Dans 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007612.
Texte intégralRapports d'organisations sur le sujet "Precision health"
Bonnett, Michaela, Meaghan Kennedy, Odiraa Okala et Teri Garstka. Precision Public Health : Empowering Communities with Hyperlocal Data for Targeted Interventions and Improved Outcomes. Orange Sparkle Ball, mai 2024. http://dx.doi.org/10.61152/sktq6431.
Texte intégralUpadhyaya, Shrini K., Abraham Shaviv, Abraham Katzir, Itzhak Shmulevich et David S. Slaughter. Development of A Real-Time, In-Situ Nitrate Sensor. United States Department of Agriculture, mars 2002. http://dx.doi.org/10.32747/2002.7586537.bard.
Texte intégralScheffler, Bettina, Alexander Bremer et Christian Kopkow. Evidence-based guideline recommendations for physiotherapy in Parkinson's disease : a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, octobre 2022. http://dx.doi.org/10.37766/inplasy2022.10.0042.
Texte intégralHopmann, Christian, Christoph Zimmermann, Daniel C. Fritsche, Kirsten Bobzin, Hendrik Heinemann, Marvin Erck et Nicole Lohrey. Design of an injection mold with local placement of heating coatings for warpage compensation. Universidad de los Andes, décembre 2024. https://doi.org/10.51573/andes.pps39.gs.im.1.
Texte intégralZhang, Yu, Chaoliang Sun, Hengxi Xu, Weiyang Shi, Luqi Cheng, Alain Dagher, Yuanchao Zhang et Tianzi Jiang. Connectivity-Based Subtyping of De Novo Parkinson Disease : Biomarkers, Medication Effects and Longitudinal Progression. Progress in Neurobiology, avril 2024. http://dx.doi.org/10.60124/j.pneuro.2024.10.04.
Texte intégralHealth hazard evaluation report : HETA-84-415-1688, Precision Castparts Corporation, Portland, Oregon. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, mai 1986. http://dx.doi.org/10.26616/nioshheta844151688.
Texte intégralHealth hazard evaluation report : HETA-86-004-1740, Industrial Precision, Inc., Westfield, Massachusetts. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, octobre 1986. http://dx.doi.org/10.26616/nioshheta860041740.
Texte intégralHealth hazard evaluation report : HETA-98-0131-2704, U.S. Precision Lens Incorporated, Cincinnati, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, août 1998. http://dx.doi.org/10.26616/nioshheta9801312704.
Texte intégralHealth hazard evaluation report : HETA-99-0085-2736, U.S. Precision Lens, Incorporated, Cincinnati, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, avril 1999. http://dx.doi.org/10.26616/nioshheta9900852736.
Texte intégral