Littérature scientifique sur le sujet « Preovulatory luteinizing hormone surge »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Preovulatory luteinizing hormone surge ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Preovulatory luteinizing hormone surge"
Rangel, P. L., P. J. Sharp et C. G. Gutierrez. « Testosterone antagonist (flutamide) blocks ovulation and preovulatory surges of progesterone, luteinizing hormone and oestradiol in laying hens ». Reproduction 131, no 6 (juin 2006) : 1109–14. http://dx.doi.org/10.1530/rep.1.01067.
Texte intégralZheng, Cuihong, Thippeswamy Gulappa, Bindu Menon et K. M. J. Menon. « Association between LH receptor regulation and ovarian hyperstimulation syndrome in a rodent model ». Reproduction 160, no 2 (août 2020) : 239–45. http://dx.doi.org/10.1530/rep-20-0058.
Texte intégralBowen, Jennifer M., Geoffrey E. Dahl, Neil P. Evans, Lori A. Thrun, Yuedong Wang, Morton B. Brown et Fred J. Karsch. « Importance of the Gonadotropin-Releasing Hormone (GnRH) Surge for Induction of the Preovulatory Luteinizing Hormone Surge of the Ewe : Dose-Response Relationship and Excess of GnRH* ». Endocrinology 139, no 2 (1 février 1998) : 588–95. http://dx.doi.org/10.1210/endo.139.2.5719.
Texte intégralChoi, Yuri, Okto Lee, Kiyoung Ryu et Jaesook Roh. « Luteinizing Hormone Surge-Induced Krüppel-like Factor 4 Inhibits Cyp17A1 Expression in Preovulatory Granulosa Cells ». Biomedicines 12, no 1 (27 décembre 2023) : 71. http://dx.doi.org/10.3390/biomedicines12010071.
Texte intégralMatsuwaki, T., M. Suzuki, K. Yamanouchi et M. Nishihara. « Glucocorticoid counteracts the suppressive effect of tumor necrosis factor-alpha on the surge of luteinizing hormone secretion in rats ». Journal of Endocrinology 181, no 3 (1 juin 2004) : 509–13. http://dx.doi.org/10.1677/joe.0.1810509.
Texte intégralMorello, H., L. Caligaris, B. Haymal et S. Taleisnik. « Daily variations in the sensitivity of proestrous LH surge in the inhibitory effect of intraventricular injection of 5-HT or GABA in rats ». Canadian Journal of Physiology and Pharmacology 70, no 4 (1 avril 1992) : 447–51. http://dx.doi.org/10.1139/y92-057.
Texte intégralda Silva Bitecourt, Frederico, Carina Oliveira Dumont Horta, Karen Santos Lima, Bruno Bastos Godoi, Fernanda Luiza Menezes Bello, Cíntia Maria Rodrigues, Luana Pereira Leite Schetino et Kinulpe Honorato-Sampaio. « Morphological study of apoptosis in granulosa cells and ovulation in a model of atresia in rat preovulatory follicles ». Zygote 26, no 4 (août 2018) : 336–41. http://dx.doi.org/10.1017/s0967199418000291.
Texte intégralRoozendaal, Marjolijn M., Hans JM Swarts, Victor M. Wiegant et John AM Mattheij. « Effect of restraint stress on the preovulatory luteinizing hormone profile and ovulation in the rat ». European Journal of Endocrinology 133, no 3 (septembre 1995) : 347–53. http://dx.doi.org/10.1530/eje.0.1330347.
Texte intégralChu, Adrienne, Lei Zhu, Ian D. Blum, Oliver Mai, Alexei Leliavski, Jan Fahrenkrug, Henrik Oster, Ulrich Boehm et Kai-Florian Storch. « Global But Not Gonadotrope-Specific Disruption of Bmal1 Abolishes the Luteinizing Hormone Surge Without Affecting Ovulation ». Endocrinology 154, no 8 (1 août 2013) : 2924–35. http://dx.doi.org/10.1210/en.2013-1080.
Texte intégralHatanaka, Fumiko, et Masaru Wada. « Mechanism controlling photostimulated luteinizing hormone secretion is different from preovulatory luteinizing hormone surge in Japanese quail (Coturnix coturnix japonica) ». General and Comparative Endocrinology 70, no 1 (avril 1988) : 101–8. http://dx.doi.org/10.1016/0016-6480(88)90098-6.
Texte intégralThèses sur le sujet "Preovulatory luteinizing hormone surge"
Simonneaux, Marine. « Évaluation de l’impact de la perturbation du rythme circadien sur la fonction de reproduction des mammifères femelles ». Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ096.
Texte intégralIn female mammals, optimal fertility relies on the synchronization of neuroendocrine and behavioral events regulating reproductive function. To this end, the circadian timing system, entrained by the light-dark cycle, sets the pace for the hypothalamic-pituitary-ovarian axis. Therefore, irregular light-dark cycles, such as those experienced in shift work, can disrupt reproductive function and compromise fertility, especially in women. This research aimed to assess the effects of circadian disruption on female reproductive function and investigate the underlying neuroendocrine mechanisms. In female mice, exposure to a light-based shift work model led to a major desynchronization of the preovulatory LH surge, which persisted for several weeks. This disruption was associated with altered transmission of daily signals from the master circadian clock to kisspeptin neurons, which regulate LH secretion. Additionally, reproductive outcomes in mice were affected, though without any major impact on offspring development
Paaske, Lauren K. « AVPV kisspeptin neurons mediate neuroprogesterone induction of the luteinizing hormone surge ». Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1526942.
Texte intégralOvulation requires neural circuits in the brain to be sequentially exposed to estradiol and progesterone in the female rat. Estradiol-induced neuroprogesterone is essential for the luteinizing hormone (LH) surge and subsequently, ovulation to occur. The LH surge is regulated by gonadotropin-releasing hormone (GnRH) neurons in the diagonal band of Broca (DBB) which do not express progesterone receptors (PR), but are closely associated with anteroventral periventricular nucleus (AVPV) PR-expressing kisspeptin neurons. I tested the hypothesis that estradiol-induced neuroprogesterone activates AVPV kisspeptin neurons to trigger the LH surge. Inhibiting progesterone synthesis blocked estradiol induction of the LH surge that was rescued by subsequent treatment with either progesterone or DBB kisspeptin infusion. Estradiol treatment triggered a robust LH surge that was blocked by AVPV kisspeptin asODN infusion. These results support the hypothesis that neuroprogesterone induces kisspeptin release from AVPV neurons to activate DBB GnRH neurons and trigger the LH surge.
Maze, Timothy D. « Development of the induced gonadotropin surge mechanism in the prepubertal heifer ». Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2525.
Texte intégralTitle from document title page. Document formatted into pages; contains viii, 71 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 61-70).
Chuon, Timbora. « Src Kinase Signaling Pathway Mediates Neuroprogesterone Induction of the Luteinizing Hormone Surge ». Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10839349.
Texte intégralOvulation is regulated by feedback mechanisms that include systems of astrocyte-neuronal interactions responsive to estradiol and progesterone in the rat. Estradiol induces progesterone receptors (PGRs) in rostral periventricular region of the third ventricle (RP3V) kisspeptin neurons, and positive feedback estradiol concentrations induce neuroprogesterone (neuroP) synthesis in hypothalamic astrocytes that signal to PGRs expressed in kisspeptin neurons to trigger the LH surge. I tested the hypothesis that neuroP-PGR signals through Src family kinase (Src) to trigger the LH surge. PGR and Src are co-expressed in RP3V neurons and their colocalization and immunopositive cells are upregulated with estradiol treatment. RP3V infusions of Src inhibitor (PP2) attenuated the LH surge in 50µg EB primed ovariectomized/adrenalectomized (ovx/adx) rats. In 2µg EB primed animals, infusions of Src activator and PGR triggered the LH surge. These results support my hypothesis that neuroprogesterone signals through RP3V PGR-Src complexes in kisspeptin neurons to induce the LH surge.
Liu, Tang-Yu. « A Mathematical Model for the Luteinizing Hormone Surge in the Menstrual Cycle ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471606050.
Texte intégralRichter, Trevor Aubrey. « Investigation of the blockade of the estradiol-induced luteinizing hormone surge by progesterone ». Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620945.
Texte intégralPierson, Janice. « The influence of season on preovulatory events associated with estrus synchronization in dwarf goats raised in Quebec ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0033/MQ64430.pdf.
Texte intégralBreckenridge, Charles B., Chad D. Foradori, Coder Pragati Sawhney, James W. Simpkins, Robert L. Sielken et Robert J. Handa. « Changes in Sensitivity to the Effects of Atrazine on the Luteinizing Hormone Surge in Female Sprague-Dawley Rats after Repeated Daily Doses : Correlation with Liver Enzyme Expression ». WILEY, 2018. http://hdl.handle.net/10150/627193.
Texte intégralBahougne, Thibault. « Perturbation de la rythmicité circadienne : impact sur la fonction reproductive de souris femelles ». Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAJ001.
Texte intégralIn female mammals, cycles in reproductive function depend on both a biological clock synchronized to the light/dark cycle, and a balance between the negative and positive feedbacks of estradiol which concentration varies during ovary maturation. In women, studies report that chronodisruptive environments, notably those experienced in shiftwork conditions, may impair fertility and gestational success. The objective of this study was to explore, in female mice, the effects of shifted light/dark cycles on both the robustness of the estrous cycles and the timing of the preovulatory luteinizing hormone (LH) surge, two hallmarks of mammalian reproductive health. When mice were exposed to a single 10 h-phase advance or 10 h-phase delay, the occurrence and timing of the LH surge and estrous cyclicity were recovered at the third estrous cycle. By contrast, when mice were exposed to a chronic shift (successive rotations of 10 h-phase advance for 3 days followed by 10 h-phase delay for 4 days), they exhibited a severely impaired reproductive activity. Most mice had no preovulatory LH surge already at the beginning of the chronic shift. Furthermore, the gestational success of mice exposed to a chronic shift was reduced since the number of pups was two times lower in shifted as compared to control mice. In conclusion, this study reports that female mice exposure to a single-phase shift has minor reproductive effects whereas exposure to chronically disrupted light/dark cycles markedly impairs the preovulatory LH surge occurrence, leading to reduced fertility
« Effect of Maternal Age on Transcriptome of Granulosa Cells from Bovine Dominant Follicles ». Thesis, 2014. http://hdl.handle.net/10388/ETD-2014-01-1364.
Texte intégralLivres sur le sujet "Preovulatory luteinizing hormone surge"
M, Goldman Jerome, et United States. Environmental Protection Agency, dir. Influence of the formamidine pesticide chlordimeform on ovulation in the female hamster : Dissociable shifts in the luteinizing hormone surge and oocyte release. [Washington, D.C. ? : Environmental Protection Agency, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Preovulatory luteinizing hormone surge"
Karsch, Fred J., Suzanne M. Moenter et Alain Caraty. « The Preovulatory Surge of Gonadotropin Releasing Hormone ». Dans Modes of Action of GnRH and GnRH Analogs, 241–55. New York, NY : Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2916-2_16.
Texte intégral« Reproductive Neuroendocrine Regulation in the Female : Toward a Neurochemical Mechanism for the Preovulatory Luteinizing Hormone Surge ». Dans Reproductive and Developmental Toxicology, 171–228. CRC Press, 1998. http://dx.doi.org/10.1201/9781420002898-9.
Texte intégralOwen, Corie M., et Laurinda A. Jaffe. « Luteinizing hormone-induced changes in the structure of mammalian preovulatory follicles ». Dans Current Topics in Developmental Biology. Elsevier, 2024. http://dx.doi.org/10.1016/bs.ctdb.2024.10.011.
Texte intégralGangat, Naseema. « Benign Hematologic Disorders ». Dans Mayo Clinic Internal Medicine Board Review, 399–414. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190464868.003.0037.
Texte intégralHedricks, Cynthia, Linda J. Piccinino et J. Richard Udry. « A First Attempt at Estimating Luteinizing Hormone Surge Onset Day at Midcycle ». Dans Menstruation, Health, and Illness, 59–64. Taylor & Francis, 2019. http://dx.doi.org/10.4324/9781315793078-7.
Texte intégralLee-Chiong, Teofilo. « Sleep in Women ». Dans Sleep Medicine : Essentials and Review, 445–60. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195306590.003.0015.
Texte intégralPoletto, Karine Queiroz, Eduardo Camelo de Castro, Gabriella Reis de Barros Ribeiro et Thaiz Brandão Cosac. « Follicular waves in the human ovary ». Dans Medicine : an exploration of the anatomy of the human body. Seven Editora, 2024. http://dx.doi.org/10.56238/sevened2024.005-004.
Texte intégralChandel, Shobhini, Saumya Das, Smriti Ojha et Manisha Pandey. « Hormonal Imbalances and Genetic Factors in Menstrual Cycle Irregularities ». Dans Women's Health : A Comprehensive Guide to Common Health Issues in Women, 101–28. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815256291124010008.
Texte intégral