Articles de revues sur le sujet « Protein-rich biomass »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Protein-rich biomass ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Georgiou, Despoina, Aggelos Charisis, Athina Theocharidou, et al. "Foaming Properties of Chlorella sorokiniana Microalgal Biomass." Colloids and Interfaces 8, no. 6 (2024): 66. https://doi.org/10.3390/colloids8060066.
Texte intégralSvensson, Sofie E., Ludmila Bucuricova, Jorge A. Ferreira, Pedro F. Souza Filho, Mohammad J. Taherzadeh, and Akram Zamani. "Valorization of Bread Waste to a Fiber- and Protein-Rich Fungal Biomass." Fermentation 7, no. 2 (2021): 91. http://dx.doi.org/10.3390/fermentation7020091.
Texte intégralLeng, Lijian, Lihong Yang, Jiefeng Chen, et al. "A review on pyrolysis of protein-rich biomass: Nitrogen transformation." Bioresource Technology 315 (November 2020): 123801. http://dx.doi.org/10.1016/j.biortech.2020.123801.
Texte intégralPan-utai, Wanida, Thidarat Pantoa, Sittiruk Roytrakul, et al. "Ultrasonic-Assisted Extraction and Antioxidant Potential of Valuable Protein from Ulva rigida Macroalgae." Life 13, no. 1 (2022): 86. http://dx.doi.org/10.3390/life13010086.
Texte intégralKarimi, Sajjad, Nasrollah Mahboobi Soofiani, Amir Mahboubi, et al. "Evaluation of Nutritional Composition of Pure Filamentous Fungal Biomass as a Novel Ingredient for Fish Feed." Fermentation 7, no. 3 (2021): 152. http://dx.doi.org/10.3390/fermentation7030152.
Texte intégralKarimi, Sajjad, Nasrollah Mahboobi Soofiani, Amir Mahboubi, and Mohammad Taherzadeh. "Use of Organic Wastes and Industrial By-Products to Produce Filamentous Fungi with Potential as Aqua-Feed Ingredients." Sustainability 10, no. 9 (2018): 3296. http://dx.doi.org/10.3390/su10093296.
Texte intégralZakariashvili, Nino, Izolda Khokhashvili, Lali Kutateladze, et al. "A New Functional Food Additive - Biomass Obtained by Bioconversion of Apple Juice Production Waste." International Journal of Environmental and Agriculture Research 11, no. 5 (2025): 08–14. https://doi.org/10.5281/zenodo.15552007.
Texte intégralRodrigues, A. M., and J. F. Santos Oliveira. "High-Rate Algal Ponds: Treatment of Wastewaters and Protein Production: IV – Chemical Composition of Biomass Produced from Swine Wastes." Water Science and Technology 19, no. 12 (1987): 243–48. http://dx.doi.org/10.2166/wst.1987.0152.
Texte intégralA, THANIKACHALAM, and RANGARAJAN M. "BIOCONVERSION OF RICE STRAW INTO PROTEIN RICH FEED." Madras Agricultural Journal 79, March (1992): 138–41. http://dx.doi.org/10.29321/maj.10.a01744.
Texte intégralMachado, Luís, Gonçalo Carvalho, and Ricardo N. Pereira. "Effects of Innovative Processing Methods on Microalgae Cell Wall: Prospects towards Digestibility of Protein-Rich Biomass." Biomass 2, no. 2 (2022): 80–102. http://dx.doi.org/10.3390/biomass2020006.
Texte intégralAsadollahzadeh, Mohammadtaghi, Ali Ghasemian, Ahmadreza Saraeia, Hossein Resalati, and Mohammad J. Taherzadeh. "Production of fungal biomass protein by filamentous fungi cultivation on liquid waste streams from pulping process." BioResources 13, no. 3 (2018): 5013–31. http://dx.doi.org/10.15376/biores.13.3.5013-5031.
Texte intégralShavandi, Amin, Hafez Jafari, Erika Zago, Parinaz Hobbi, Lei Nie, and Nelson De Laet. "A sustainable solvent based on lactic acid and l-cysteine for the regeneration of keratin from waste wool." Green Chemistry 23, no. 3 (2021): 1171–74. http://dx.doi.org/10.1039/d0gc04314a.
Texte intégralFabiszewska, Agata Urszula, Joanna Kobus, Magdalena Górnicka, Aleksandra Piotrowicz, Iga Piasecka, and Dorota Nowak. "Valorisation of Waste Oils Through Oleaginous Yarrowia lipolytica Yeast: Insights into Lipid Stability and Nutritive Properties of Lipid-Rich Biomass." Applied Sciences 15, no. 12 (2025): 6796. https://doi.org/10.3390/app15126796.
Texte intégralMoura, Marília A. F., Viviane S. Alves, and Jacqueline A. Takahashi. "Nutritional Quality, Techno-Functional Characteristics, and Safety of Biomass Powder and Protein Isolate Produced from Penicillium maximae." Foods 11, no. 22 (2022): 3621. http://dx.doi.org/10.3390/foods11223621.
Texte intégralTrovão, Mafalda, Lisa Schüler, Humberto Pedroso, et al. "Isolation and Selection of Protein-Rich Mutants of Chlorella vulgaris by Fluorescence-Activated Cell Sorting with Enhanced Biostimulant Activity to Germinate Garden Cress Seeds." Plants 13, no. 17 (2024): 2441. http://dx.doi.org/10.3390/plants13172441.
Texte intégralDu, Lin, Pablo J. Arauzo, Maria Fernanda Meza Zavala, Zebin Cao, Maciej Pawel Olszewski, and Andrea Kruse. "Towards the Properties of Different Biomass-Derived Proteins via Various Extraction Methods." Molecules 25, no. 3 (2020): 488. http://dx.doi.org/10.3390/molecules25030488.
Texte intégralSoto-Sierra, L., S. Kulkarni, S. L. Woodard, and Z. L. Nikolov. "Processing of permeabilized Chlorella vulgaris biomass into lutein and protein-rich products." Journal of Applied Phycology 32, no. 3 (2020): 1697–707. http://dx.doi.org/10.1007/s10811-020-02055-x.
Texte intégralSar, Taner, Murat Ozturk, Mohammad J. Taherzadeh, and Jorge A. Ferreira. "New Insights on Protein Recovery from Olive Oil Mill Wastewater through Bioconversion with Edible Filamentous Fungi." Processes 8, no. 10 (2020): 1210. http://dx.doi.org/10.3390/pr8101210.
Texte intégralAndreeva, Anna, Ekaterina Budenkova, Olga Babich, et al. "Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins." Molecules 26, no. 9 (2021): 2767. http://dx.doi.org/10.3390/molecules26092767.
Texte intégralXu, Manman, Quanbo Huang, Runcang Sun, and Xiaohui Wang. "Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass." RSC Advances 6, no. 91 (2016): 88674–82. http://dx.doi.org/10.1039/c6ra18725k.
Texte intégralGuo, Chaozhong, Wenli Liao, Zhongbin Li, Lingtao Sun, and Changguo Chen. "Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction." Nanoscale 7, no. 38 (2015): 15990–98. http://dx.doi.org/10.1039/c5nr03828f.
Texte intégralUwineza, Clarisse, Taner Sar, Amir Mahboubi, and Mohammad J. Taherzadeh. "Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed." Sustainability 13, no. 22 (2021): 12489. http://dx.doi.org/10.3390/su132212489.
Texte intégralYu, Dayu, Guizhen Xie, Qicheng Chen, Yang Yang, and Nanhang Dong. "Biofuel potential of liquid products from protein- and lipid-rich biomass hydrothermal liquefaction." Biomass and Bioenergy 165 (October 2022): 106571. http://dx.doi.org/10.1016/j.biombioe.2022.106571.
Texte intégralSteinberg, Lisa M., Rachel E. Kronyak, and Christopher H. House. "Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass." Life Sciences in Space Research 15 (November 2017): 32–42. http://dx.doi.org/10.1016/j.lssr.2017.07.006.
Texte intégralMarchioro, Marcelo Luis Kuhn, Gabrielli Aline Pietro Bom Candeia, Luana Malaquias Bertoleti, Aneli M. Barbosa-Dekker, Robert F. H. Dekker та Mário Antônio Alves da Cunha. "Bioprospecting the Endophytic Fungus, Lasiodiplodia theobromae MMPI, for the Integrated Production of Mycoprotein and Exocellular (1→6)-β-Glucan". Fermentation 11, № 4 (2025): 166. https://doi.org/10.3390/fermentation11040166.
Texte intégralSalazar-González, Claudia, Carolina Mendoza Ramos, Hugo A. Martínez-Correa, and Hugo Fabián Lobatón García. "Extraction and Concentration of Spirulina Water-Soluble Metabolites by Ultrafiltration." Plants 13, no. 19 (2024): 2770. http://dx.doi.org/10.3390/plants13192770.
Texte intégralZhu, Bifen, Yu Zhong, Danfeng Wang, and Yun Deng. "Active and Intelligent Biodegradable Packaging Based on Anthocyanins for Preserving and Monitoring Protein-Rich Foods." Foods 12, no. 24 (2023): 4491. http://dx.doi.org/10.3390/foods12244491.
Texte intégralHarutyunyan, Baghish, Gunnar Mühlstädt, Leander Seibel, et al. "Algal biomass as a food and feed supplement: Process engineering analysis." Functional Foods in Health and Disease 15, no. 7 (2025): 380–95. https://doi.org/10.31989/ffhd.v15i7.1662.
Texte intégralBulkan, Gülru, Jorge A. Ferreira, Karthik Rajendran, and Mohammad J. Taherzadeh. "Techno-Economic Analysis of Bioethanol Plant By-Product Valorization: Exploring Market Opportunities with Protein-Rich Fungal Biomass Production." Fermentation 6, no. 4 (2020): 99. http://dx.doi.org/10.3390/fermentation6040099.
Texte intégralSulatan, Mazhar, D. Murali, and Krishnan Dhandayuthapani. "PROTEIN RICH BIOMASS PRODUCTION BY NOVEL YEAST Cyberlindnera jadinii MMS7 USING Chara sp. HYDROLYSATE AND EVALUATION OF ITS ANTI-BACTERIAL ACTIVITY." Journal of Drug Delivery and Therapeutics 9, no. 4 (2019): 419–25. http://dx.doi.org/10.22270/jddt.v9i4.3176.
Texte intégralMaruyama, Tatsuo, Hironari Matsushita, Yukiko Shimada, et al. "Proteins and Protein-Rich Biomass as Environmentally Friendly Adsorbents Selective for Precious Metal Ions." Environmental Science & Technology 41, no. 4 (2007): 1359–64. http://dx.doi.org/10.1021/es061664x.
Texte intégralNitayavardhana, Saoharit, Kerati Issarapayup, Prasert Pavasant, and Samir Kumar Khanal. "Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate." Bioresource Technology 133 (April 2013): 301–6. http://dx.doi.org/10.1016/j.biortech.2013.01.073.
Texte intégralAmbarwati, Diyah Putri, Ervia Yudiati, Endang Supriyantini, and Lilik Maslukah. "Pola Pertumbuhan, Biomassa Dan Kandungan Protein Kasar Kultur Skeletonema costatum Skala Massal Dengan Konsentrasi Kalium Nitrat Berbeda." BULETIN OSEANOGRAFI MARINA 7, no. 2 (2018): 75. http://dx.doi.org/10.14710/buloma.v7i2.20896.
Texte intégralLi, Tao, Jin Xu, Houbo Wu, Peiliang Jiang, Zishuo Chen, and Wenzhou Xiang. "Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations." Marine Drugs 17, no. 2 (2019): 124. http://dx.doi.org/10.3390/md17020124.
Texte intégralGientka, Iwona, Ewa Ostrowska-Ligęza, Magdalena Wirkowska-Wojdyła, and Alicja Synowiec. "The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen." Applied Sciences 13, no. 19 (2023): 11072. http://dx.doi.org/10.3390/app131911072.
Texte intégralKhastini, Rida Oktorida, and Rani Rahmawati. "Produksi Biomassa, Analisis Nutrisi dan Senyawa Bioaktif Jamur Grigit (Schizophyllum commune)." Biotropic : The Journal of Tropical Biology 7, no. 2 (2023): 43–51. http://dx.doi.org/10.29080/biotropic.v7i2.1932.
Texte intégralJain, Surbhi, James Heffernan, Jitendra Joshi, Thomas Watts, Esteban Marcellin, and Chris Greening. "Microbial conversion of waste gases into single-cell protein." Microbiology Australia 44, no. 1 (2023): 27–30. http://dx.doi.org/10.1071/ma23007.
Texte intégralShah, Urja, and Dr Murtaza Hajoori. "Production of Single Cell Protein from Fruit Waste." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 1311–17. http://dx.doi.org/10.22214/ijraset.2022.46369.
Texte intégralSitepu, Irnayuli R., Alex Hitomi, Wayne Wu, Angela Wu, Tina Jeoh, and Kyria Boundy-Mills. "Production of high protein yeast using enzymatically liquefied almond hulls." PLOS ONE 18, no. 11 (2023): e0293085. http://dx.doi.org/10.1371/journal.pone.0293085.
Texte intégralKiros, Tadele G., Richard Nadege, Jean Philippe Marden, Geraldine Kuhn, and Fabio Catunda. "229 Yeast Proteins Extracted from Saccharomyces Cerevisiae as Alternative Sources of Protein in Swine Nutrition." Journal of Animal Science 99, Supplement_3 (2021): 120. http://dx.doi.org/10.1093/jas/skab235.220.
Texte intégralNham Tran, Thi Linh, Ana F. Miranda, Adarsha Gupta, et al. "The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments." Marine Drugs 18, no. 3 (2020): 151. http://dx.doi.org/10.3390/md18030151.
Texte intégralBraga, Anna Rafaela Cavalcante, Maria Cristiana Nunes, and Anabela Raymundo. "The Experimental Development of Emulsions Enriched and Stabilized by Recovering Matter from Spirulina Biomass: Valorization of Residue into a Sustainable Protein Source." Molecules 28, no. 17 (2023): 6179. http://dx.doi.org/10.3390/molecules28176179.
Texte intégralReis, Willian S. M., Arthur O. Preto, Giovanna M. Sant’Ana, et al. "Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries." Foods 14, no. 6 (2025): 990. https://doi.org/10.3390/foods14060990.
Texte intégralShevelyuhina, Alexandra, Olga Babich, Stanislav Sukhikh, et al. "Antioxidant and Antimicrobial Activity of Microalgae of the Filinskaya Bay (Baltic Sea)." Plants 11, no. 17 (2022): 2264. http://dx.doi.org/10.3390/plants11172264.
Texte intégralChahal, Devinder Singh. "Production of protein-rich mycelial biomass of a mushroom, Pleurotus sajor-caju, on corn stover." Journal of Fermentation and Bioengineering 68, no. 5 (1989): 334–38. http://dx.doi.org/10.1016/0922-338x(89)90008-1.
Texte intégralForghani, Bita, Romain Bordes, Anna Ström, and Ingrid Undeland. "Recovery of a protein-rich biomass from shrimp (Pandalus borealis) boiling water: A colloidal study." Food Chemistry 302 (January 2020): 125299. http://dx.doi.org/10.1016/j.foodchem.2019.125299.
Texte intégralMaruyama, Tatsuo, Yasuki Terashima, Shinano Takeda, Fumiyoshi Okazaki, and Masahiro Goto. "Selective adsorption and recovery of precious metal ions using protein-rich biomass as efficient adsorbents." Process Biochemistry 49, no. 5 (2014): 850–57. http://dx.doi.org/10.1016/j.procbio.2014.02.016.
Texte intégralOliveira, Érica R., Gabriel R. Carvalho, Paula R. Santos, and Fabiana Queiroz. "Green Coffee (Coffea arabica) and its Residual Biomass: Characterization for the Industrial Approach." Current Nutrition & Food Science 16, no. 7 (2020): 1072–87. http://dx.doi.org/10.2174/1573401315666191008164900.
Texte intégralAraújo, Fabíola Ornellas de, Reinaldo Giudici, and João José Martins Simões de Sousa. "CULTIVATION OF THE MICROALGAE CHLORELLA PYRENOIDOSA USING THE PROCESSES OF BIOTECHNOLOGY." Revista Eletrônica Acervo Científico 2 (March 26, 2019): 121. http://dx.doi.org/10.25248/reac.e121.2019.
Texte intégralPleissner, Daniel, Niels Thomas Eriksen, Kim Lundgreen, and Hans Ulrik Riisgård. "Biomass Composition of Blue Mussels, Mytilus edulis, is Affected by Living Site and Species of Ingested Microalgae." ISRN Zoology 2012 (November 26, 2012): 1–12. http://dx.doi.org/10.5402/2012/902152.
Texte intégral