Littérature scientifique sur le sujet « Pseudo-random number generator (PRNG) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Pseudo-random number generator (PRNG) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Pseudo-random number generator (PRNG)"
Lambic, Dragan, et Mladen Nikolic. « New pseudo-random number generator based on improved discrete-space chaotic map ». Filomat 33, no 8 (2019) : 2257–68. http://dx.doi.org/10.2298/fil1908257l.
Texte intégralWang, Luyao, et Hai Cheng. « Pseudo-Random Number Generator Based on Logistic Chaotic System ». Entropy 21, no 10 (30 septembre 2019) : 960. http://dx.doi.org/10.3390/e21100960.
Texte intégralBhattacharjee, Kamalika, Dipanjyoti Paul et Sukanta Das. « Pseudo-random number generation using a 3-state cellular automaton ». International Journal of Modern Physics C 28, no 06 (19 avril 2017) : 1750078. http://dx.doi.org/10.1142/s0129183117500784.
Texte intégralPasqualini, Luca, et Maurizio Parton. « Pseudo Random Number Generation through Reinforcement Learning and Recurrent Neural Networks ». Algorithms 13, no 11 (23 novembre 2020) : 307. http://dx.doi.org/10.3390/a13110307.
Texte intégralAdak, Sumit, Kamalika Bhattacharjee et Sukanta Das. « Maximal length cellular automata in GF(q) and pseudo-random number generation ». International Journal of Modern Physics C 31, no 03 (9 janvier 2020) : 2050037. http://dx.doi.org/10.1142/s0129183120500370.
Texte intégralLiu, Junxiu, Zhewei Liang, Yuling Luo, Lvchen Cao, Shunsheng Zhang, Yanhu Wang et Su Yang. « A Hardware Pseudo-Random Number Generator Using Stochastic Computing and Logistic Map ». Micromachines 12, no 1 (30 décembre 2020) : 31. http://dx.doi.org/10.3390/mi12010031.
Texte intégralDe Micco, L., H. A. Larrondo, A. Plastino et O. A. Rosso. « Quantifiers for randomness of chaotic pseudo-random number generators ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 367, no 1901 (28 août 2009) : 3281–96. http://dx.doi.org/10.1098/rsta.2009.0075.
Texte intégralAskar, Tair, Bekdaulet Shukirgaliyev, Martin Lukac et Ernazar Abdikamalov. « Evaluation of Pseudo-Random Number Generation on GPU Cards ». Computation 9, no 12 (14 décembre 2021) : 142. http://dx.doi.org/10.3390/computation9120142.
Texte intégralRichardson, Joseph D. « Pseudo-random number generation based on digit isolation referenced to entropy buffers ». SIMULATION 98, no 5 (29 octobre 2021) : 389–406. http://dx.doi.org/10.1177/00375497211054462.
Texte intégralTANG, K. W., WALLACE K. S. TANG et K. F. MAN. « A CHAOS-BASED PSEUDO-RANDOM NUMBER GENERATOR AND ITS APPLICATION IN VOICE COMMUNICATIONS ». International Journal of Bifurcation and Chaos 17, no 03 (mars 2007) : 923–33. http://dx.doi.org/10.1142/s021812740701763x.
Texte intégralThèses sur le sujet "Pseudo-random number generator (PRNG)"
Yang, Chunxiao. « Fractional chaotic pseudo-random number generator design and application to image cryptosystem ». Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0063.
Texte intégralChaotic systems have been employed to design pseudo-random number generators (PRNG) and applied to cryptosystems due to their promising features, such as randomness and sensitivity to initial conditions. The fractional chaotic systems, though muchless discussed than the classical integer order chaotic maps and systems, possess intriguing intricacy which can provide novelty, complexity, and extra secret keys to the Chaotic PRNG (CPRNG) design, which in turn enhance the security of the cryptosystem.This thesis investigated different numerical calculation approaches for fractional chaotic systems. A non-uniform gird calculationmethod with two different grid compositions was proposed to solve the 3D fractional chaotic systems numerically. The FractionalCPRNGs (FCPRNG), which meet the randomness and statistical requirements, were designed for the first time employing threedifferent fractional chaotic systems. In addition, a stream cipher and a block cipher based on DNA encoding and decoding methods were proposed and studied using the designed FCPRNGs. Both ciphers have been verified to be secure and reliable
Gärtner, Joel. « Analysis of Entropy Usage in Random Number Generators ». Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214567.
Texte intégralKryptografiskt säkra slumptalsgeneratorer behöver ofta initialiseras med ett oförutsägbart frö. En annan lösning är att istället konstant ge slumptalsgeneratorer entropi. Detta gör det möjligt att garantera att det interna tillståndet i generatorn hålls oförutsägbart. I den här rapporten analyseras fyra sådana generatorer som matas med entropi. Dessutom presenteras olika sätt att skatta entropi och en ny skattningsmetod utvecklas för att användas till analysen av generatorerna. Den framtagna metoden för entropiskattning lyckas bra i tester och används för att analysera entropin i de olika generatorerna. Alla analyserade generatorer uppvisar beteenden som inte verkar optimala för generatorns funktionalitet. De flesta av de analyserade generatorerna verkar dock oftast säkra att använda.
Nordmark, Oskar. « Turbo Code Performance Analysis Using Hardware Acceleration ». Thesis, Linköpings universitet, Datorteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137666.
Texte intégralBakiri, Mohammed. « Hardware implementation of a pseudo random number generator based on chaotic iteration ». Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD014/document.
Texte intégralSecurity and cryptography are key elements in constrained devices such as IoT, smart card, embedded system, etc. Their hardware implementations represent a challenge in terms of limitations in physical resources, operating speed, memory capacity, etc. In this context, as most protocols rely on the security of a good random number generator, considered an indispensable element in lightweight security core. Therefore, this work proposes new pseudo-random generators based on chaotic iterations, and designed to be deployed on hardware support, namely FPGA or ASIC. These hardware implementations can be described as post-processing on existing generators. They transform a sequence of numbers not uniform into another sequence of numbers uniform. The dependency between input and output has been proven chaotic, according notably to the mathematical definitions of chaos provided by Devaney and Li-Yorke. Following that, we firstly elaborate or develop out a complete state of the art of the material and physical implementations of pseudo-random number generators (PRNG, for pseudorandom number generators). We then propose new generators based on chaotic iterations (IC) which will be tested on our hardware platform. The initial idea was to start from the n-cube (or, in an equivalent way, the vectorial negation in CIs), then remove a Hamiltonian cycle balanced enough to produce new functions to be iterated, for which is added permutation on output . The methods recommended to find good functions, will be detailed, and the whole will be implemented on our FPGA platform. The resulting generators generally have a better statistical profiles than its inputs, while operating at a high speed. Finally, we will implement them on many hardware support (65-nm ASIC circuit and Zynq FPGA platform)
Mahdal, Jakub. « Bezpečné kryptografické algoritmy ». Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2008. http://www.nusl.cz/ntk/nusl-235972.
Texte intégralDusitsin, Krid, et Kurt Kosbar. « Accuracy of Computer Simulations that use Common Pseudo-random Number Generators ». International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609238.
Texte intégralIn computer simulations of communication systems, linear congruential generators and shift registers are typically used to model noise and data sources. These generators are often assumed to be close to ideal (i.e. delta correlated), and an insignificant source of error in the simulation results. The samples generated by these algorithms have non-ideal autocorrelation functions, which may cause a non-uniform distribution in the data or noise signals. This error may cause the simulation bit-error-rate (BER) to be artificially high or low. In this paper, the problem is described through the use of confidence intervals. Tests are performed on several pseudo-random generators to access which ones are acceptable for computer simulation.
Zouhar, Petr. « Generátor náhodných čísel ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218290.
Texte intégralStewart, Robert Grisham. « A Statistical Evaluation of Algorithms for Independently Seeding Pseudo-Random Number Generators of Type Multiplicative Congruential (Lehmer-Class) ». Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2049.
Texte intégralXu, Jinzhong. « Stream Cipher Analysis Based on FCSRs ». UKnowledge, 2000. http://uknowledge.uky.edu/gradschool_diss/320.
Texte intégralNovotný, Marek. « Programy pro výpočet nejistoty měření metodou Monte Carlo ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221220.
Texte intégralChapitres de livres sur le sujet "Pseudo-random number generator (PRNG)"
Zhu, Huafei, Wee-Siong Ng et See-Kiong Ng. « Sustainable Pseudo-random Number Generator ». Dans Security and Privacy Protection in Information Processing Systems, 139–47. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39218-4_11.
Texte intégralAnderson, Peter G. « A Fibonacci-Based Pseudo-Random Number Generator ». Dans Applications of Fibonacci Numbers, 1–8. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3586-3_1.
Texte intégralDörre, Felix, et Vladimir Klebanov. « Pseudo-Random Number Generator Verification : A Case Study ». Dans Lecture Notes in Computer Science, 61–72. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29613-5_4.
Texte intégralLv, Jianwen, Xiaodong Li, Tao Yang, Haoyang Yu et Beisheng Liu. « A General Pseudo-Random Number Generator Based on Chaos ». Dans 4th EAI International Conference on Robotic Sensor Networks, 103–9. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70451-3_9.
Texte intégralShah, Trishla, Srinivas Sampalli, Darshana Upadhyay et Priyanka Sharma. « Performance Evaluation of a Pseudo-Random Number Generator Against Various Attacks ». Dans Proceedings of the Future Technologies Conference (FTC) 2018, 291–304. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02683-7_21.
Texte intégralMukherjee, Ayan, Pradeep Kumar Mallick et Debahuti Mishra. « Chaotic Pseudo Random Number Generator (cPRNG) Using One-Dimensional Logistic Map ». Dans Biologically Inspired Techniques in Many Criteria Decision Making, 697–708. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8739-6_62.
Texte intégralKim, Hyunji, Yongbeen Kwon, Minjoo Sim, Sejin Lim et Hwajeong Seo. « Generative Adversarial Networks-Based Pseudo-Random Number Generator for Embedded Processors ». Dans Information Security and Cryptology – ICISC 2020, 215–34. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68890-5_12.
Texte intégralRajashekharan, Lekshmi, et C. Shunmuga Velayutham. « Is Differential Evolution Sensitive to Pseudo Random Number Generator Quality ? – An Investigation ». Dans Advances in Intelligent Systems and Computing, 305–13. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23036-8_26.
Texte intégralLópez, Amalia Beatriz Orúe, Gonzalo Álvarez Marañon, Alberto Guerra Estévez, Gerardo Pastor Dégano, Miguel Romera García et Fausto Montoya Vitini. « Trident, a New Pseudo Random Number Generator Based on Coupled Chaotic Maps ». Dans Advances in Intelligent and Soft Computing, 183–90. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16626-6_20.
Texte intégralSharma, Moolchand, Suman Deswal, Jigyasa Sachdeva, Varun Maheshwari et Mayank Arora. « Security on Cloud Computing Using Pseudo-random Number Generator Along with Steganography ». Dans Artificial Intelligence and Applied Mathematics in Engineering Problems, 654–65. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36178-5_54.
Texte intégralActes de conférences sur le sujet "Pseudo-random number generator (PRNG)"
Ribeiro, Wellinton Costa, et Marcus Tadeu Pinheiro Silva. « Evaluating the Randomness of the RNG in a Commercial Smart Card ». Dans Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/sbseg.2017.19531.
Texte intégralYoo, Dongchang, Yewon Kim, Taeill Yoo et Yongjin Yeom. « Analysis of the Random Number Generator Using MD5 PRNG in Linux Kernel ». Dans Advanced Science and Technology 2017. Science & Engineering Research Support soCiety, 2017. http://dx.doi.org/10.14257/astl.2017.143.34.
Texte intégralRikitake, Kenji. « TinyMT pseudo random number generator for Erlang ». Dans the eleventh ACM SIGPLAN workshop. New York, New York, USA : ACM Press, 2012. http://dx.doi.org/10.1145/2364489.2364504.
Texte intégralRikitake, Kenji. « SFMT pseudo random number generator for Erlang ». Dans the 10th ACM SIGPLAN workshop. New York, New York, USA : ACM Press, 2011. http://dx.doi.org/10.1145/2034654.2034669.
Texte intégralChefranov, A., et T. Mazurova. « Pseudo-Random Number Generator RC4 Period Improvement ». Dans 2006 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2006. http://dx.doi.org/10.1109/aqtr.2006.254596.
Texte intégralBagdasar, Ovidiu D., et Minsi Chen. « A Horadam-Based Pseudo-Random Number Generator ». Dans 2014 UKSim-AMSS 16th International Conference on Modelling and Simulation (UKSim). IEEE, 2014. http://dx.doi.org/10.1109/uksim.2014.55.
Texte intégralAbutaha, Mohammed, Safwan El Assad, Ons Jallouli, Audrey Queudet et Olivier Deforges. « Design of a pseudo-chaotic number generator as a random number generator ». Dans 2016 International Conference on Communications (COMM). IEEE, 2016. http://dx.doi.org/10.1109/iccomm.2016.7528291.
Texte intégralChang, Weiling, Binxing Fang, Xiaochun Yun, Shupeng Wang et Xiangzhan Yu. « A Pseudo-Random Number Generator Based on LZSS ». Dans 2010 Data Compression Conference. IEEE, 2010. http://dx.doi.org/10.1109/dcc.2010.77.
Texte intégralBo Yang, Qingfeng Hu, Jie Liu et Chunye Gong. « GPU optimized Pseudo Random Number Generator for MCNP ». Dans 2013 IEEE Conference Anthology. IEEE, 2013. http://dx.doi.org/10.1109/anthology.2013.6784792.
Texte intégralKim, Soo Hyeon, Daewan Han et Dong Hoon Lee. « Predictability of Android OpenSSL's pseudo random number generator ». Dans the 2013 ACM SIGSAC conference. New York, New York, USA : ACM Press, 2013. http://dx.doi.org/10.1145/2508859.2516706.
Texte intégralRapports d'organisations sur le sujet "Pseudo-random number generator (PRNG)"
Bailey, David H. A Pseudo-Random Number Generator Based on Normal Numbers. Office of Scientific and Technical Information (OSTI), décembre 2004. http://dx.doi.org/10.2172/860344.
Texte intégral