Littérature scientifique sur le sujet « PV GENERATION SYSTEM »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « PV GENERATION SYSTEM ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "PV GENERATION SYSTEM"
Zhou, Hua, Huahua Wu, Chengjin Ye, Shijie Xiao, Jun Zhang, Xu He et Bo Wang. « Integration Capability Evaluation of Wind and Photovoltaic Generation in Power Systems Based on Temporal and Spatial Correlations ». Energies 12, no 1 (5 janvier 2019) : 171. http://dx.doi.org/10.3390/en12010171.
Texte intégralHuang, Ke, Xin Wang, Yi Hui Zheng, Li Xue Li et Yan Ling Liu. « Reliability Analysis of Distribution Network with Integrated Photovoltaic Power Generation ». Applied Mechanics and Materials 672-674 (octobre 2014) : 956–60. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.956.
Texte intégralLee, Seung-Min, Eui-Chan Lee, Jung-Hun Lee, Sun-Ho Yu, Jae-Sil Heo, Woo-Young Lee et Bong-Suck Kim. « Analysis of the Output Characteristics of a Vertical Photovoltaic System Based on Operational Data : A Case Study in Republic of Korea ». Energies 16, no 19 (6 octobre 2023) : 6971. http://dx.doi.org/10.3390/en16196971.
Texte intégralAbedi, Sajjad, Gholam Hossein Riahy, Seyed Hossein Hosseinian et Arash Alimardani. « Risk-Constrained Unit Commitment of Power System Incorporating PV and Wind Farms ». ISRN Renewable Energy 2011 (19 décembre 2011) : 1–8. http://dx.doi.org/10.5402/2011/309496.
Texte intégralJeong, Han Sang, Jaeho Choi, Ho Hyun Lee et Hyun Sik Jo. « A Study on the Power Generation Prediction Model Considering Environmental Characteristics of Floating Photovoltaic System ». Applied Sciences 10, no 13 (29 juin 2020) : 4526. http://dx.doi.org/10.3390/app10134526.
Texte intégralAlsafasfeh, Qais. « An Efficient Algorithm for Power Prediction in PV Generation System ». International Journal of Renewable Energy Development 9, no 2 (15 avril 2020) : 207–16. http://dx.doi.org/10.14710/ijred.9.2.207-216.
Texte intégralAdeiah James, Penrose Cofie, Anthony Hill, Olatunde Adeoye, Pam Obiomon, Charles Tolliver et Justin Foreman. « Alleviating power line congestion through the use of a renewable generation ». World Journal of Advanced Engineering Technology and Sciences 7, no 2 (30 novembre 2022) : 013–28. http://dx.doi.org/10.30574/wjaets.2022.7.2.0117.
Texte intégralWynn, Sane Lei Lei, Terapong Boonraksa, Promphak Boonraksa, Watcharakorn Pinthurat et Boonruang Marungsri. « Decentralized Energy Management System in Microgrid Considering Uncertainty and Demand Response ». Electronics 12, no 1 (3 janvier 2023) : 237. http://dx.doi.org/10.3390/electronics12010237.
Texte intégralHerez, Amal, Hassan Jaber, Hicham El Hage, Thierry Lemenand, Mohamad Ramadan et Mahmoud Khaled. « A review on the classifications and applications of solar photovoltaic technology ». AIMS Energy 11, no 6 (2023) : 1102–30. http://dx.doi.org/10.3934/energy.2023051.
Texte intégralHan, Xian Sui, et Qi Hui Liu. « Modeling and Simulation of Grid-Connected Photovoltaic System Based on PSCAD ». Advanced Materials Research 986-987 (juillet 2014) : 367–70. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.367.
Texte intégralThèses sur le sujet "PV GENERATION SYSTEM"
Makki, Adham. « Innovative heat pipe-based photovoltaic/thermoelectric (PV/TEG) generation system ». Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/43330/.
Texte intégralCarr, Anna J. « A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods / ». Access via Murdoch University Digital Theses Project, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20050830.94641.
Texte intégralSimhadri, Arvind. « Impact of distributed generation of solar photovoltaic (PV) generation on the Massachusetts transmission system ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98604.
Texte intégralThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2015. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 73-76).
After reaching 250 megawatt direct current (MW dc) of solar photovoltaic (PV) generation installed in Massachusetts (MA) in 2013, four years ahead of schedule, Governor Deval Patrick in May of 2013 announced an increase in the MA solar PV goal to 1,600 MW by 2020 ([13]). However, integration of such significant quantities of solar PV into the electric power system is potentially going to require changes to the transmission system planning and operations to ensure continued reliability of operation ([14]). The objective of this project is to predict the distribution of solar PV in MA and to develop a simulation framework to analyze the impact of solar generation on the electric power system. To accomplish this objective, we first developed a prediction model for solar PV aggregate and spatial long term distribution. We collected solar PV installation data and electricity consumption data for 2004 to 2014 for each ZIP code in MA. Additional information such as population, land availability, average solar radiance, number of households, and other demographic data per ZIP code was also added to improve the accuracy of the model. For example, ZIP codes with higher solar radiance are more likely to have solar PV installations. By utilizing machine learning methods, we developed a model that incorporates demographic factors and applies a logistic growth model to forecast the capacity of solar PV generation per ZIP code. Next we developed an electrically equivalent model to represent the predicted addition of solar PV on the transmission system. Using this model, we analyzed the impact of solar PV installations on steady-state voltage of the interconnected electric transmission system. We used Siemens PTI's PSS/E software for transmission network modeling and analysis. Additionally, we conducted a sensitivity analysis on scenarios such as peak and light electricity consumption period, different locations of solar PV, and voltage control methods to identify potential reliability concerns. Furthermore, we tested the system reliability in the event of outages of key transmission lines, using N-1 contingency analysis. The analysis identified that the voltage deviation on transmission system because of adding 1,600 MW dc of distributed solar PV is within +/- 5% range. Based on the analysis performed in this thesis, we conclude that the current MA transmission system can operate reliably after the addition of the expected 1,600 MW dc of solar PV. As National Grid acquires information on solar installations, new data will improve the ability and accuracy of the prediction model to predict solar PV capacity and location more accurately. The simulation framework developed in this thesis can be utilized to rerun the analysis to test the robustness of the electric transmission system at a future date.
by Arvind Simhadri.
S.M.
M.B.A.
Ahmed-Mahmoud, Ashraf. « Power conditioning unit for small scale hybrid PV-wind generation system ». Thesis, Durham University, 2011. http://etheses.dur.ac.uk/580/.
Texte intégralDeng, Wenpeng. « A solar PV-LED lighting system with bidirectional grid ballasting ». Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709190.
Texte intégralSONG, CONGCONG. « Electricity generation from hybrid PV-wind-bio-mass system for rural application in Brazil ». Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211794.
Texte intégralAgalgaonkar, Yashodhan Prakash. « Control and operation of power distribution system for optimal accommodation of PV generation ». Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24954.
Texte intégralSahoo, Smrutirekha. « Impact Study : Photo-voltaic Distributed Generation on Power System ». Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-32369.
Texte intégralAbdalla, Imadeddin Abdalla. « Integrated PV and multilevel converter system for maximum power generation under partial shading conditions ». Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/4603/.
Texte intégralVERMA, PALLAVI. « CONTROL OF SOLAR PV SYSTEM BASED MICROGRID FOR ENHANCED PERFORMANCE ». Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18879.
Texte intégralLivres sur le sujet "PV GENERATION SYSTEM"
Coddington, Michael H. Updating interconnection screens for PV system integration. Golden, CO : National Renewable Energy Laboratory, 2012.
Trouver le texte intégralGoodrich, Alan C. Solar PV manufacturing cost model group : Installed solar PV system prices. Golden, Colo.] : National Renewable Energy Laboratory, 2011.
Trouver le texte intégralEmery, K. Monitoring system performance : Venue : PV Module Reliability Workshop. Golden, Colo.] : National Renewable Energy Laboratory, 2011.
Trouver le texte intégralCoddington, Michael H. Solutions for deploying PV systems in New York City's secondary network system. Golden, Colo.] : National Renewable Energy Laboratory, 2010.
Trouver le texte intégralHacke, Peter. System voltage potential-induced degradation mechanisms in PV modules and methods for test : Preprint. Golden, CO] : National Renewable Energy Laboratory, 2011.
Trouver le texte intégral(Organization), IT Power, dir. Solar photovoltaic power generation using PV technology. [Manila?] : Asian Development Bank, 1996.
Trouver le texte intégralLowder, Travis. The potential of securitization in solar PV finance. Golden, CO : National Renewable Energy Laboratory, 2013.
Trouver le texte intégralNational Renewable Energy Laboratory (U.S.), dir. Future of grid-tied PV business models : What will happen when PV penetration on the distribution grid is significant ? : preprint. Golden, CO : National Renewable Energy Laboratory, 2008.
Trouver le texte intégralMunro, Donna. Trends in PV power applications in selected IEA countries between 1992 and 1997\. Paris : International Energy Agency, 1998.
Trouver le texte intégralGoodrich, Alan C. Solar PV manufacturing cost analysis : U.S. competitiveness in a global industry. Golden, Colo.] : National Renewable Energy Laboratory, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "PV GENERATION SYSTEM"
Mwango, Manish, Yugvansh Shrey, Harpreet Singh Bedi et Javed Dhillon. « PV System Design and Solar Generation Implementation ». Dans Studies in Infrastructure and Control, 63–69. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8963-6_6.
Texte intégralMandi, Rajashekar P. « Solar PV System with Energy Storage and Diesel Generator ». Dans Handbook of Distributed Generation, 749–90. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51343-0_22.
Texte intégralShadoul, Myada, Hassan Yousef, Rashid Al-Abri et Amer Al-Hinai. « Intelligent Control Design for PV Grid-Connected Inverter ». Dans Energy Management System for Dispatchable Renewable Power Generation, 79–118. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003307433-3.
Texte intégralSudhakar, T. D., K. N. Srinivas, M. Mohana Krishnan et R. Raja Prabu. « Design and Analysis of Grid Connected PV Generation System ». Dans Proceedings of 2nd International Conference on Intelligent Computing and Applications, 413–22. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1645-5_35.
Texte intégralHu, Xuefeng, Zikang Long, Chenjin Fei, Zhenhai Yu et Kunshu Mu. « An Integrated Boost Micro-inverter for PV Generation System ». Dans Lecture Notes in Electrical Engineering, 708–15. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1528-4_72.
Texte intégralPriyadarshi, Neeraj, Kavita Yadav, Vinod Kumar et Monika Vardia. « An Experimental Study on Zeta Buck–Boost Converter for Application in PV System ». Dans Handbook of Distributed Generation, 393–406. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51343-0_13.
Texte intégralKarthik, M., et N. Divya. « Assessment of different MPPT techniques for PV system ». Dans Machine Learning and the Internet of Things in Solar Power Generation, 157–72. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003302964-9.
Texte intégralPanigrahi, Basanta K., Anshuman Bhuyan, Arpan K. Satapathy, Ruturaj Pattanayak et Bhagyashree Parija. « Fault Analysis of Grid Connected Wind/PV Distributed Generation System ». Dans ICICCT 2019 – System Reliability, Quality Control, Safety, Maintenance and Management, 47–54. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8461-5_6.
Texte intégralPrajapati, Sandhya, et Eugene Fernandez. « Fuzzy Model for Efficiency Estimation of Solar PV Based Hydrogen Generation Electrolyser ». Dans Control Applications in Modern Power System, 251–60. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_22.
Texte intégralMansouri, Nouha, Chokri Bouchoucha et Adnen Cherif. « Modeling and Simulation of Renewable Generation System : Tunisia Grid Connected PV System Case Study ». Dans Proceedings of the 1st International Conference on Smart Innovation, Ergonomics and Applied Human Factors (SEAHF), 316–22. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22964-1_36.
Texte intégralActes de conférences sur le sujet "PV GENERATION SYSTEM"
Bhat, Rajatha, Miroslav Begovic, Insu Kim et John Crittenden. « Effects of PV on Conventional Generation ». Dans 2014 47th Hawaii International Conference on System Sciences (HICSS). IEEE, 2014. http://dx.doi.org/10.1109/hicss.2014.299.
Texte intégralChen, C. S., C. H. Lin, W. L. Hsieh, C. T. Hsu et T. T. Ku. « Advanced distribution automation system for control of PV inverters to enhance PV penetration ». Dans 2013 2nd International Symposium on Next-Generation Electronics (ISNE 2013). IEEE, 2013. http://dx.doi.org/10.1109/isne.2013.6512406.
Texte intégralda Rocha, N. M., J. C. Passos, D. C. Martins et R. F. Coelho. « Suggestion of Associating a PV MPPT Algorithm Based on Temperature Control with a PV Cooling System ». Dans 3rd Renewable Power Generation Conference (RPG 2014). Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.0890.
Texte intégralChen, Lei, Fan Wu, Zhang Sun, Jun Wang, Xiaoyan Han et Gang Chen. « An new method of PV generation fluctuation suppression for cascade hydro-pv-pumped storage generation system ». Dans 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2019. http://dx.doi.org/10.1109/isgt-asia.2019.8881429.
Texte intégralLilly, Patrick, et George Simons. « California’s Self-Generation Incentive Program Nonresidential PV Systems : Measured System Performance and Actual Costs ». Dans ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88228.
Texte intégralNatsheh, E. M., E. J. Blackhurs et A. Albarbar. « PV system monitoring and performance of a grid connected PV power station located in Manchester-UK ». Dans IET Conference on Renewable Power Generation (RPG 2011). IET, 2011. http://dx.doi.org/10.1049/cp.2011.0121.
Texte intégralKonishi, Hiroo. « A study of large-scale PV system design considering PV generation distribution ». Dans 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744940.
Texte intégralJadhav, Madhuri B., et M. U. Shetty. « Grid Connected PV System with Constant Power Generation ». Dans 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE). IEEE, 2018. http://dx.doi.org/10.1109/icrieece44171.2018.9008950.
Texte intégralMalla, S. G. « Small signal model of PV power generation system ». Dans 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). IEEE, 2017. http://dx.doi.org/10.1109/icpcsi.2017.8392289.
Texte intégralReshmi, N., et M. Nandakumar. « Grid-connected PV system with a seven-level inverter ». Dans 2016 International Conference on Next Generation Intelligent Systems (ICNGIS). IEEE, 2016. http://dx.doi.org/10.1109/icngis.2016.7854065.
Texte intégralRapports d'organisations sur le sujet "PV GENERATION SYSTEM"
Lu, Shuai, Ruisheng Diao, Nader A. Samaan et Pavel V. Etingov. Capacity Value of PV and Wind Generation in the NV Energy System. Office of Scientific and Technical Information (OSTI), mars 2014. http://dx.doi.org/10.2172/1060671.
Texte intégralBackstrom, Robert, et David Dini. Firefighter Safety and Photovoltaic Systems Summary. UL Firefighter Safety Research Institute, novembre 2011. http://dx.doi.org/10.54206/102376/kylj9621.
Texte intégralBackstrom, Robert, et David Backstrom. Firefighter Safety and Photovoltaic Installations Research Project. UL Firefighter Safety Research Institute, novembre 2011. http://dx.doi.org/10.54206/102376/viyv4379.
Texte intégralSchauder, C. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems. Office of Scientific and Technical Information (OSTI), mars 2014. http://dx.doi.org/10.2172/1129274.
Texte intégral