Pour voir les autres types de publications sur ce sujet consultez le lien suivant : QC790 - Physics of elementary particles.

Articles de revues sur le sujet « QC790 - Physics of elementary particles »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « QC790 - Physics of elementary particles ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Salam, Abdus. "Elementary particles." Contemporary Physics 50, no. 1 (2009): 5–22. http://dx.doi.org/10.1080/00107510902734805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Carramiñana, Alberto. "Astrophysics and elementary particles." Journal of Physics: Conference Series 18 (January 1, 2005): 308–37. http://dx.doi.org/10.1088/1742-6596/18/1/008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jaeger, Gregg. "Localizability and elementary particles." Journal of Physics: Conference Series 1638 (October 2020): 012010. http://dx.doi.org/10.1088/1742-6596/1638/1/012010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Eriksson, Jarl I. "Simple Mathematics for Elementary Particles." Physics Essays 7, no. 4 (1994): 410–14. http://dx.doi.org/10.4006/1.3029157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fabjan, C. W., and R. Wigmans. "Energy measurement of elementary particles." Reports on Progress in Physics 52, no. 12 (1989): 1519–80. http://dx.doi.org/10.1088/0034-4885/52/12/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Smrz, PK. "Geometrical Models of Elementary Particles." Australian Journal of Physics 48, no. 6 (1995): 1045. http://dx.doi.org/10.1071/ph951045.

Texte intégral
Résumé :
A new concept of space and time, constructed from a de Sitter structured principal fibre bundle with a connection, is used to discuss a geometrical interpretation for the complex plane of the quantum theory and quantum behaviour of particles. In particular some features of a theory based on a torsion free metric linear connection in a five-dimensional base manifold are described.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dolce, Donatello. "Elementary spacetime cycles." Europhys. Lett. 102, no. 2013 (2013): 31002. https://doi.org/10.1209/0295-5075/102/31002.

Texte intégral
Résumé :
Every system in physics is described in terms of interacting elementary particles characterized by modulated spacetime recurrences. These intrinsic periodicities, implicit in undulatory mechanics, imply that every free particle is a reference clock linking time to the particle's mass, and every system is formalizable by means of modulated elementary spacetime cycles. We propose a novel consistent relativistic formalism based on intrinsically cyclic spacetime dimensions, encoding the quantum recurrences of elementary particles into spacetime geometrodynamics. The advantage of the resulting theo
Styles APA, Harvard, Vancouver, ISO, etc.
8

HA, YUAN K. "ARE BLACK HOLES ELEMENTARY PARTICLES?" International Journal of Modern Physics A 24, no. 18n19 (2009): 3577–83. http://dx.doi.org/10.1142/s0217751x09047223.

Texte intégral
Résumé :
Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.
Styles APA, Harvard, Vancouver, ISO, etc.
9

CASADIO, ROBERTO. "CHARGED SHELLS AND ELEMENTARY PARTICLES." International Journal of Modern Physics A 28, no. 18 (2013): 1350088. http://dx.doi.org/10.1142/s0217751x13500887.

Texte intégral
Résumé :
We review the General Relativistic model of a (quasi-)pointlike particle represented by a massive shell of electrically charged matter, which displays an ADM mass M equal to the electric charge |Q| in the small-volume limit. We employ the Israel–Darboux's junction equations to explicitly derive this result, and then study the modifications introduced by the existence of a minimum length scale λ. For λ of the order of the Planck length (or larger), we find that the ADM mass becomes equal to the bare mass m0 of the shell, like it occurs for the neutral case.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boldov, I. A. "Geometry of elementary particles." Mathematical structures and modeling, no. 4 (2022): 5–21. http://dx.doi.org/10.24147/2222-8772.2022.4.5-21.

Texte intégral
Résumé :
Based on the assumption that there is no direct causal relationship between the defect in the mass of atomic nuclei and the forces holding the nucleons in the nucleus [1], the hypothesis is put forward that the quarks are nucleons with whole Coulomb and other (baryon, lepton) charges. Based on the conclusions obtained by the author [1] that there is no fundamental prohibition on the use of approaches and concepts of the macrocosm in the physics of the microcosm, and that the mass in the space of our Universe is equivalent to a three-dimensional volume, a comparison of the geometry of elementar
Styles APA, Harvard, Vancouver, ISO, etc.
11

MARANER, PAOLO. "ELEMENTARY PARTICLES AND SPIN REPRESENTATIONS." Modern Physics Letters A 19, no. 05 (2004): 357–62. http://dx.doi.org/10.1142/s0217732304013258.

Texte intégral
Résumé :
We emphasize that the group-theoretical considerations leading to SO (10) unification of electroweak and strong matter field components naturally extend to spacetime components, providing a truly unified description of all generation degrees of freedoms in terms of a single chiral spin representation of one of the groups SO (13,1), SO (9,5), SO (7,7) or SO (3,11). The realization of these groups as higher-dimensional spacetime symmetries produces unification of all fundamental fermions is a single spacetime spinor.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Beylin, Vitaly, Maxim Yu Khlopov, Vladimir Kuksa, and Nikolay Volchanskiy. "Hadronic and Hadron-Like Physics of Dark Matter." Symmetry 11, no. 4 (2019): 587. http://dx.doi.org/10.3390/sym11040587.

Texte intégral
Résumé :
The problems of simple elementary weakly interacting massive particles (WIMPs) appeal to extend the physical basis for nonbaryonic dark matter. Such extension involves more sophisticated dark matter candidates from physics beyond the Standard Model (BSM) of elementary particles. We discuss several models of dark matter, predicting new colored, hyper-colored or techni-colored particles and their accelerator and non-accelerator probes. The nontrivial properties of the proposed dark matter candidates can shed new light on the dark matter physics. They provide interesting solutions for the puzzles
Styles APA, Harvard, Vancouver, ISO, etc.
13

Jaeger, Gregg. "The Elementary Particles of Quantum Fields." Entropy 23, no. 11 (2021): 1416. http://dx.doi.org/10.3390/e23111416.

Texte intégral
Résumé :
The elementary particles of relativistic quantum field theory are not simple field quanta, as has long been assumed. Rather, they supplement quantum fields, on which they depend on but to which they are not reducible, as shown here with particles defined instead as a unified collection of properties that appear in both physical symmetry group representations and field propagators. This notion of particle provides consistency between the practice of particle physics and its basis in quantum field theory.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Cruise, D. R., and Owen R. Cruise. "Electromagnetic self-energy of elementary particles." Physics Essays 32, no. 2 (2019): 190–204. http://dx.doi.org/10.4006/0836-1398-32.2.190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Close, F. "‘Elementary particles’ (1960) by Abdus Salam." Contemporary Physics 50, no. 1 (2009): 3. http://dx.doi.org/10.1080/00107510802702936.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Smirnov, A. I. "Elementary particles in the early universe." Russian Physics Journal 49, no. 3 (2006): 343–44. http://dx.doi.org/10.1007/s11182-006-0111-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Israelit, Mark, and Nathan Rosen. "Classical elementary particles in general relativity." Foundations of Physics 21, no. 10 (1991): 1237–47. http://dx.doi.org/10.1007/bf00734266.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Rosen, Nathan. "Elementary particles in bimetric general relativity." Foundations of Physics 19, no. 3 (1989): 339–48. http://dx.doi.org/10.1007/bf00734563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kowalczyński, J. K. "On the mass spectrum of elementary particles." Letters in Mathematical Physics 15, no. 2 (1988): 165–70. http://dx.doi.org/10.1007/bf00397838.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Manton, Nicholas S. "Solitons as elementary particles: a paradigm scrutinized." Nonlinearity 21, no. 11 (2008): T221—T232. http://dx.doi.org/10.1088/0951-7715/21/11/t01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Safonova, Nina. "On the question of the radius of elementary particles." E3S Web of Conferences 389 (2023): 01059. http://dx.doi.org/10.1051/e3sconf/202338901059.

Texte intégral
Résumé :
This article belongs to the field of theoretical physics, specifically the study of elementary particles. We discuss the parameters of elementary particles, their interactions with gravitational potential and magnetic fields, stability with respect to their lifetimes, as well as interactions between particles with different parameters, including different masses. We clarify the concept of electric charge for particles. We use methods and formulas from classical physics that are accessible to a wide range of interested individuals.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Alhaidari, A. D. "Structural Algebraic Quantum Field Theory: Particles with Structure." Physics of Particles and Nuclei Letters 20, no. 6 (2023): 1293–307. http://dx.doi.org/10.1134/s154747712306002x.

Texte intégral
Résumé :
Abstract Conventional quantum field theory is a method for studying structureless elementary particles. Non-elementary particles, on the other hand, are those with internal structure or particles that are made up of elementary constituents like the nucleons, which contain quarks and gluons. We introduce a structure-inclusive algebraic formulation of quantum field theory that could handle such particles and in which orthogonal polynomials play a central role. For simplicity, we consider non-elementary scalar particles in 3 + 1 Minkowski space-time and, in an appendix, we treat spinors having st
Styles APA, Harvard, Vancouver, ISO, etc.
23

WARD, B. F. L. "ARE MASSIVE ELEMENTARY PARTICLES BLACK HOLES?" Modern Physics Letters A 19, no. 02 (2004): 143–49. http://dx.doi.org/10.1142/s0217732304012885.

Texte intégral
Résumé :
We use exact results in a new approach to quantum gravity to study the effect of quantum loop corrections on the behavior of the metric of spacetime near the Schwarzschild radius of a massive point particle in the standard model. We show that the classical conclusion that such a system is a black hole is obviated. Phenomenological implications are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
24

FENG, JONATHAN L., ARVIND RAJARAMAN, and FUMIHIRO TAKAYAMA. "PROBING GRAVITATIONAL INTERACTIONS OF ELEMENTARY PARTICLES." International Journal of Modern Physics D 13, no. 10 (2004): 2355–59. http://dx.doi.org/10.1142/s0218271804006474.

Texte intégral
Résumé :
The gravitational interactions of elementary particles are suppressed by the Planck scale M*~1018 GeV and are typically expected to be far too weak to be probed by experiments. We show that, contrary to conventional wisdom, such interactions may be studied by particle physics experiments in the next few years. As an example, we consider conventional supergravity with a stable gravitino as the lightest supersymmetric particle. The next-lightest supersymmetric particle (NLSP) decays to the gravitino through gravitational interactions after about a year. This lifetime can be measured by stopping
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lessner, G. "Five‐dimensional relativity and extended elementary particles." Annalen der Physik 521, no. 6 (2009): 410–35. http://dx.doi.org/10.1002/andp.20095210605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rozental', I. L. "Elementary particles and cosmology (Metagalaxy and Universe)." Uspekhi Fizicheskih Nauk 167, no. 8 (1997): 801–10. http://dx.doi.org/10.3367/ufnr.0167.199708a.0801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Gould, Robert J. "The intrinsic magnetic moment of elementary particles." American Journal of Physics 64, no. 5 (1996): 597–601. http://dx.doi.org/10.1119/1.18161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Griffiths, David, and Gerald W. Intemann. "POST‐USE REVIEW: Introduction to Elementary Particles." American Journal of Physics 58, no. 3 (1990): 282–83. http://dx.doi.org/10.1119/1.16201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Israelit, Mark, and Nathan Rosen. "Classical models of elementary particles with spin." General Relativity and Gravitation 27, no. 2 (1995): 153–61. http://dx.doi.org/10.1007/bf02107955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Callaway, David J. E. "Triviality pursuit: Can elementary scalar particles exist?" Physics Reports 167, no. 5 (1988): 241–320. http://dx.doi.org/10.1016/0370-1573(88)90008-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Guendelman, E. I. "On the gravitational structure of elementary particles." General Relativity and Gravitation 22, no. 2 (1990): 131–36. http://dx.doi.org/10.1007/bf00756204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Rosen, Nathan. "Elementary particles in bimetric general relativity. II." Foundations of Physics 19, no. 11 (1989): 1337–44. http://dx.doi.org/10.1007/bf00732755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Leifer, P. "An Affine Gauge Theory of Elementary Particles." Foundations of Physics Letters 18, no. 2 (2005): 195–203. http://dx.doi.org/10.1007/s10702-005-3962-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Massa, Corrado. "Does Schuster's Law Apply to Elementary Particles?" Annalen der Physik 501, no. 2 (1989): 156–58. http://dx.doi.org/10.1002/andp.19895010214.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lessner, G. "Five-dimensional relativity and extended elementary particles." Annalen der Physik 18, no. 6 (2009): 410–35. http://dx.doi.org/10.1002/andp.200810353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kanayafor, Kazuyuki. "Elementary Particles on a Dedicated Parallel Computer." Fortschritte der Physik 50, no. 5-7 (2002): 531–37. http://dx.doi.org/10.1002/1521-3978(200205)50:5/7<531::aid-prop531>3.0.co;2-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Haba, Z. "Relativistic diffusion of elementary particles with spin." Journal of Physics A: Mathematical and Theoretical 42, no. 44 (2009): 445401. http://dx.doi.org/10.1088/1751-8113/42/44/445401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Vasiliev, Boris V. "Some Problems of Elementary Particles Physics and Gilbert’s Postulate." Journal of Modern Physics 07, no. 14 (2016): 1874–88. http://dx.doi.org/10.4236/jmp.2016.714166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wiener, Gerfried J., Sascha M. Schmeling, and Martin Hopf. "Introducing 12 year-olds to elementary particles." Physics Education 52, no. 4 (2017): 044001. http://dx.doi.org/10.1088/1361-6552/aa6cfe.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Dappiaggi, Claudio. "Elementary particles, holography and the BMS group." Physics Letters B 615, no. 3-4 (2005): 291–96. http://dx.doi.org/10.1016/j.physletb.2005.04.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Govorkov, A. B. "Generalized field quantization and statistics of elementary particles." Theoretical and Mathematical Physics 98, no. 2 (1994): 107–21. http://dx.doi.org/10.1007/bf01015789.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

PERL, MARTIN L., PETER C. KIM, VALERIE HALYO, et al. "THE SEARCH FOR STABLE, MASSIVE, ELEMENTARY PARTICLES." International Journal of Modern Physics A 16, no. 12 (2001): 2137–64. http://dx.doi.org/10.1142/s0217751x01003548.

Texte intégral
Résumé :
In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches — what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cos
Styles APA, Harvard, Vancouver, ISO, etc.
43

Assmann, Ralph W., Giulio Cerullo, and Felix Ritort. "Physics for health." Europhysics News 53, no. 5 (2022): 28–31. http://dx.doi.org/10.1051/epn/2022504.

Texte intégral
Résumé :
The fundamental research on the physics of elementary particles and nature's fundamental forces led to numerous spin-offs and has tremendously helped human well-being and health. This is the subject of Chapter 4 of the EPS Challenges for Physics.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Arneth, Borros. "A novel partition function for elementary particles." Physics Essays 37, no. 3 (2024): 177–89. http://dx.doi.org/10.4006/0836-1398-37.3.177.

Texte intégral
Résumé :
Three different partition functions are well-known and described in statistical physics. Here, a novel partition function for the description of intra-particular interactions and with this for the mass of particles is presented below. In statistical physics, three different partition functions are already well-established. These are the microcanonical, the canonical, and the macro-canonical partition functions. Here a fourth, novel partition function is added to these already well-established three. Thereby due to the properties of quantum mechanics and superposition, this novel partition func
Styles APA, Harvard, Vancouver, ISO, etc.
45

SIDHARTH, B. G. "THE PION MODEL." International Journal of Modern Physics E 20, no. 06 (2011): 1527–32. http://dx.doi.org/10.1142/s0218301311018514.

Texte intégral
Résumé :
We revisit the problem of a mechanism that generates the mass spectrum of elementary particles. This has vexed physicists for several decades now. In this connection, we deduce a formula that gives the masses of all known elementary particles, even though other quantum numbers are suppressed. These considerations become important in view of the Large Hadron Collider which is expected to attain 14 TeV by 2013.
Styles APA, Harvard, Vancouver, ISO, etc.
46

SHAH, G. N., and T. A. MIR. "PION AND MUON MASS DIFFERENCE: A DETERMINING FACTOR IN ELEMENTARY PARTICLE MASS DISTRIBUTION." Modern Physics Letters A 23, no. 01 (2008): 53–64. http://dx.doi.org/10.1142/s0217732308023797.

Texte intégral
Résumé :
The most fundamental to the elementary particles is the mass they possess and it would be of importance to explore a possible relationship amongst their masses. Here, an attempt is made to investigate this important aspect irrespective of their nature or scheme of classification. We show that there exists a striking tendency for successive mass differences between elementary particles to be close integral/half integral multiple of the mass difference between a neutral pion and a muon. Thus indicating discreteness in the nature of the mass occurring at the elementary particle level. Furthermore
Styles APA, Harvard, Vancouver, ISO, etc.
47

Khlopov, Maxim Yu. "Removing the conspiracy of BSM physics and BSM cosmology." International Journal of Modern Physics D 28, no. 13 (2019): 1941012. http://dx.doi.org/10.1142/s0218271819410128.

Texte intégral
Résumé :
The standard model (SM) of elementary particles finds no contradictions in the experimental data, but appeals to extensions for solutions of its internal problems and physical basis of the modern cosmology. The latter is based on inflationary models with baryosynthesis and dark matter/energy that involves Physics beyond the standard model (BSM) of elementary particles. However, studies of the BSM physical basis of the modern cosmology inevitably reveals additional particle model-dependent cosmological consequences that go beyond the modern standard cosmological model. The mutual relationship o
Styles APA, Harvard, Vancouver, ISO, etc.
48

Israilov, M., and A.A Abdurakibov. "PROSPECTS OF USING THE ZINAMA-ZINA METHOD IN TEACHING REAL PARTICLE PHYSICS." JOURNAL OF SCIENCE-INNOVATIVE RESEARCH IN UZBEKISTAN 2, no. 5 (2024): 592–601. https://doi.org/10.5281/zenodo.11246435.

Texte intégral
Résumé :
This article focuses on the application of the modern method used in the teaching of real elementary particle physics in the classroom, its demonstration and movement, and the fact that it is interesting and understandable for students.And information about each group of elementary particles is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Krori, K. D., and Namita Sarma Bordoloi. "Rajpoot–Samuel four-preon model of elementary particles." Canadian Journal of Physics 68, no. 6 (1990): 541–48. http://dx.doi.org/10.1139/p90-082.

Texte intégral
Résumé :
A study of the four-preon model of quarks, leptons, and gauge bosons recently developed by Rajpoot and Samuel has been presented in this paper with reference to a number of electromagnetic, weak, and lepto-quark interactions. It is pointed out that neutrino oscillations and neutrinoless double β-decay are not likely to occur according to this model, but the process μ → e−γ may. Further, in the context of new heavy leptons and a new scalar particle recently discussed in the literature, an attempt at identification of these particles is also made here.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Khlopov, M. "Cosmoparticle physics: The universe as a laboratory of elementary particles." Astronomy Reports 59, no. 6 (2015): 494–502. http://dx.doi.org/10.1134/s1063772915060141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!