Pour voir les autres types de publications sur ce sujet consultez le lien suivant : QTL analysi.

Articles de revues sur le sujet « QTL analysi »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « QTL analysi ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Batista, Luiz Fernando Dias, Madeline E. Rivera, Aaron B. Norris, et al. "44 Effect of Quebracho (Schinopsis balansae) extract inclusion in a high roughage diet upon in vitro gas production." Journal of Animal Science 98, Supplement_2 (2020): 53–54. http://dx.doi.org/10.1093/jas/skz397.122.

Texte intégral
Résumé :
Abstract The utilization of natural plant secondary compounds as feed additives in animal nutrition has been extensively studied because of their ability to modify digestive and metabolic functions. Condensed tannin (CT) supplementation can potentially alter ruminal fermentation, and mitigate methane (CH4) emissions. The objective of this study was to determine the effect of quebracho CT extract (QT; Schinopsis balansae) within a roughage-based diet on overall fermentability and CH4 production utilizing the in vitro gas production technique (IVGP). Twenty rumen cannulated steers (227 ± 19 kg)
Styles APA, Harvard, Vancouver, ISO, etc.
2

Barjes Alrawi, Ezzideen, Erica D. Warlick, Qing Cao, et al. "High Peripheral Blood Stem Cell (PBSC) CD34+ Cell Dose Increases the Risk of Chronic Gvhd after Human Leukocyte Antigen (HLA) Matched Sibling Transplantation." Blood 128, no. 22 (2016): 5877. http://dx.doi.org/10.1182/blood.v128.22.5877.5877.

Texte intégral
Résumé :
Abstract CD34+ cell dose is a critical determinant of outcomes after allogeneic PBSC transplantation, with a CD34 dose ≥2.0 x 10e6/kg shown to positively impact hematopoietic engraftment and survival. However, it is unknown whether additional benefits are observed with even higher CD34 cell doses. Therefore, we further explored the effect of intermediate, high and very high CD34 cell doses on the incidence of engraftment, acute and chronic graft-versus-host disease (GVHD) and transplant related mortality (TRM) and on probability of survival and GVHD-Relapse-free survival (GRFS). Three hundred
Styles APA, Harvard, Vancouver, ISO, etc.
3

Takahashi, Hidekazu. "QTL analysis using the Windows QTL Cartographer." Breeding Research 10, no. 1 (2008): 11–14. http://dx.doi.org/10.1270/jsbbr.10.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kang, Yiwei, Miao Zhang, Yue Zhang, et al. "Genetic Mapping of Grain Shape Associated QTL Utilizing Recombinant Inbred Sister Lines in High Yielding Rice (Oryza sativa L.)." Agronomy 11, no. 4 (2021): 705. http://dx.doi.org/10.3390/agronomy11040705.

Texte intégral
Résumé :
Grain shape is a key factor for yield and quality in rice. To investigate the genetic basis of grain shape in the high-yielding hybrid rice variety Nei2You No.6, a set of recombinant inbred sister lines (RISLs) were used to map quantitative trait loci (QTLs) determining grain length (GL), grain width (GW), and length-width ratio (LWR) in four environments. A total of 91 medium/minor-effect QTL were detected using a high-density genetic map consisting of 3203 Bin markers composed of single nucleotide polymorphisms, among which 64 QTL formed 15 clusters. Twelve of 15 clusters co-localized with Q
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mangin, B., P. Thoquet, and N. Grimsley. "Pleiotropic QTL Analysis." Biometrics 54, no. 1 (1998): 88. http://dx.doi.org/10.2307/2533998.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ukai, Yasuo. "Theory of QTL analysis." Breeding Research 1, no. 1 (1999): 25–31. http://dx.doi.org/10.1270/jsbbr.1.25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xu, Peng, Jin Gao, Zhibin Cao, et al. "Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton." Theoretical and Applied Genetics 130, no. 6 (2017): 1309–19. http://dx.doi.org/10.1007/s00122-017-2890-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jia, Xiaoyun, Hongxia Zhao, Jijie Zhu, Shijie Wang, Miao Li, and Guoyin Wang. "Quantitative Trait Loci Mapping and Candidate Gene Analysis for Fiber Quality Traits in Upland Cotton." Agronomy 14, no. 8 (2024): 1719. http://dx.doi.org/10.3390/agronomy14081719.

Texte intégral
Résumé :
Superior fiber quality is one of the most important objectives in cotton breeding. To detect the genetic basis underlying fiber quality, an F2 population containing 413 plants was constructed by crossing Jifeng 914 and Jifeng 173, both of which have superior fiber quality, with Jifeng 173 being better. Five fiber quality traits were investigated in the F2, F2:3, F2:4, and F2:5 populations. Quantitative trait loci (QTL) mapping was conducted based on a high-density genetic map containing 11,488 single nucleotide polymorphisms (SNPs) and spanning 4202.12 cM in length. Transgressive segregation p
Styles APA, Harvard, Vancouver, ISO, etc.
9

UKAI, Yasuo. "Quantitative Trait and QTL Analysis." Japanese journal of crop science 68, no. 2 (1999): 179–86. http://dx.doi.org/10.1626/jcs.68.179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

T., Hayashi. "Recent methods for QTL analysis." Japanese Journal of Biometrics 17, no. 1/2 (1996): 91–102. http://dx.doi.org/10.5691/jjb.17.91.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Pérez-Pérez, José Manuel, David Esteve-Bruna, and José Luis Micol. "QTL analysis of leaf architecture." Journal of Plant Research 123, no. 1 (2009): 15–23. http://dx.doi.org/10.1007/s10265-009-0267-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

van den Berg, J. H., E. E. Ewing, R. L. Plaisted, S. McMurry, and M. W. Bonierbale. "QTL analysis of potato tuberization." Theoretical and Applied Genetics 93, no. 3 (1996): 307–16. http://dx.doi.org/10.1007/bf00223170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

van den Berg, J. H., E. E. Ewing, R. L. Plaisted, S. McMurry, and M. W. Bonierbale. "QTL analysis of potato tuberization." TAG Theoretical and Applied Genetics 93, no. 3 (1996): 307–16. http://dx.doi.org/10.1007/s001220050282.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Hina, Aiman, Yongce Cao, Shiyu Song, et al. "High-Resolution Mapping in Two RIL Populations Refines Major “QTL Hotspot” Regions for Seed Size and Shape in Soybean (Glycine max L.)." International Journal of Molecular Sciences 21, no. 3 (2020): 1040. http://dx.doi.org/10.3390/ijms21031040.

Texte intégral
Résumé :
Seed size and shape are important traits determining yield and quality in soybean. However, the genetic mechanism and genes underlying these traits remain largely unexplored. In this regard, this study used two related recombinant inbred line (RIL) populations (ZY and K3N) evaluated in multiple environments to identify main and epistatic-effect quantitative trait loci (QTLs) for six seed size and shape traits in soybean. A total of 88 and 48 QTLs were detected through composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively, and 15 QTLs were common
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wu, Sanling, Jie Qiu, and Qikang Gao. "QTL-BSA: A Bulked Segregant Analysis and Visualization Pipeline for QTL-seq." Interdisciplinary Sciences: Computational Life Sciences 11, no. 4 (2019): 730–37. http://dx.doi.org/10.1007/s12539-019-00344-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

TOGASHI, Kenji, Naoyuki YAMAMOTO, Osamu SASAKI, JEO Rege, and Hisato TAKEDA. "Marker-QTL-Association Analysis Incorporating Diversification of QTL Variance and its Application." Nihon Chikusan Gakkaiho 67, no. 11 (1996): 923–29. http://dx.doi.org/10.2508/chikusan.67.923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Jia, Xiaoyun, Jijie Zhu, Hongxia Zhao, et al. "QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations." Plants 14, no. 7 (2025): 1063. https://doi.org/10.3390/plants14071063.

Texte intégral
Résumé :
Cotton is the most important natural fiber-producing crop globally. High-quality fiber and early maturity are equally important breeding goals in the cotton industry. However, it remains challenging to synchronously improve these traits through conventional breeding techniques. To identify additional genetic information relating to fiber quality and early maturity, 11 phenotypic traits for the F2 and F3 generations were tested, and quantitative trait loci (QTL) mapping was performed. Candidate genes were analyzed using published RNA-seq datasets and qRT-PCR assays. All 11 tested traits showed
Styles APA, Harvard, Vancouver, ISO, etc.
18

Chung, Ill-Min, Tae-Ho Ham, Gi-Won Cho, et al. "Study of Quantitative Trait Loci (QTLs) Associated with Allelopathic Trait in Rice." Genes 11, no. 5 (2020): 470. http://dx.doi.org/10.3390/genes11050470.

Texte intégral
Résumé :
In rice there are few genetic studies reported for allelopathy traits, which signify the ability of plants to inhibit or stimulate growth of other plants in the environment, by exuding chemicals. QTL analysis for allelopathic traits were conducted with 98 F8 RILs developed from the cross between the high allelopathic parents of ‘Sathi’ and non-allelopathic parents of ‘Nong-an’. The performance of allelopathic traits were evaluated with inhibition rate on root length, shoot length, total length, root weight, shoot weight, and total weight of lettuce as a receiver plant. With 785 polymorphic DNA
Styles APA, Harvard, Vancouver, ISO, etc.
19

Freyer, G., and N. Vukasinovic. "Comparison of granddaughter design and general pedigree design analysis of QTL in dairy cattle: a simulation study." Czech Journal of Animal Science 50, No. 12 (2011): 545–52. http://dx.doi.org/10.17221/4260-cjas.

Texte intégral
Résumé :
Traditional methods for detection and mapping of quantitative trait loci (QTL) in dairy cattle populations are usually based on daughter design (DD) or granddaughter design (GDD). Although these designs are well established and usually successful in detecting QTL, they consider sire families independently of each other, thereby ignoring relationships among other animals in the population and consequently, reducing the power of QTL detection. In this study we compared a traditional GDD with a general pedigree design (GPD) and assessed the precision and power of both methods for detecting and lo
Styles APA, Harvard, Vancouver, ISO, etc.
20

Byrne, Patrick F. "Quantitative Trait Locus (QTL) Analysis 1." Journal of Natural Resources and Life Sciences Education 34, no. 1 (2005): 124. http://dx.doi.org/10.2134/jnrlse.2005.0124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Byrne, Patrick F. "Quantitative Trait Locus (QTL) Analysis 2." Journal of Natural Resources and Life Sciences Education 34, no. 1 (2005): 124. http://dx.doi.org/10.2134/jnrlse.2005.0124a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bekes, F., W. Ma, and K. Gale. "QTL analysis of wheat quality traits." Acta Agronomica Hungarica 50, no. 3 (2002): 249–62. http://dx.doi.org/10.1556/aagr.50.2002.3.3.

Texte intégral
Résumé :
This paper aims to give an overview on the different aspects of QTL analysis of quality traits of wheat through the brief introduction of molecular genetics, cereal chemistry and the statistical methods developed and applied recently in this area. Some examples are also provided, based on the author's research activity carried out in the National Wheat Molecular Marker Program (NWMMP) established in Australia in 1996.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Nganga, Joseph, Mabel Imbuga, and Fuad A. Iraqi. "Comparative genome analysis of trypanotolerance QTL." Veterinary Immunology and Immunopathology 128, no. 1-3 (2009): 216. http://dx.doi.org/10.1016/j.vetimm.2008.10.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Iimura, Kazunari, Kimihisa Tasaki, Yoshiko Nakazawa, and Masayuki Amagai. "QTL analysis of strawberry anthracnose resistance." Breeding Research 15, no. 3 (2013): 90–97. http://dx.doi.org/10.1270/jsbbr.15.90.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

van den Berg, J. H., E. E. Ewing, R. L. Plaisted, S. McMurry, and M. W. Bonierbale. "QTL analysis of potato tuber dormancy." Theoretical and Applied Genetics 93, no. 3 (1996): 317–24. http://dx.doi.org/10.1007/bf00223171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ewing, E. E., R. L. Plaisted, S. McMurry, M. W. Bonierbale, and J. H. van den Berg. "QTL analysis of potato tuber dormancy." TAG Theoretical and Applied Genetics 93, no. 3 (1996): 317–24. http://dx.doi.org/10.1007/s001220050283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Shimoi, Hitoshi, and Taku Kato. "QTL analysis of a sake yeast." Journal of Biotechnology 136 (October 2008): S746. http://dx.doi.org/10.1016/j.jbiotec.2008.07.1776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Khan, Nisar A., Stephen M. Githiri, Eduardo R. Benitez, et al. "QTL analysis of cleistogamy in soybean." Theoretical and Applied Genetics 117, no. 4 (2008): 479–87. http://dx.doi.org/10.1007/s00122-008-0792-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Verbyla, Arūnas P., Andrew W. George, Colin R. Cavanagh, and Klara L. Verbyla. "Whole-genome QTL analysis for MAGIC." Theoretical and Applied Genetics 127, no. 8 (2014): 1753–70. http://dx.doi.org/10.1007/s00122-014-2337-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Besnier, François, Arnaud Le Rouzic, and José M. Álvarez-Castro. "Applying QTL analysis to conservation genetics." Conservation Genetics 11, no. 2 (2010): 399–408. http://dx.doi.org/10.1007/s10592-009-0036-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Ning, Jian Sun, Jingguo Wang, et al. "QTL analysis for alkaline tolerance of rice and verification of a major QTL." Plant Breeding 136, no. 6 (2017): 881–91. http://dx.doi.org/10.1111/pbr.12539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Evans, David M., Gu Zhu, David L. Duffy, Grant W. Montgomery, Ian H. Frazer, and Nicholas G. Martin. "Multivariate QTL linkage analysis suggests a QTL for platelet count on chromosome 19q." European Journal of Human Genetics 12, no. 10 (2004): 835–42. http://dx.doi.org/10.1038/sj.ejhg.5201248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Burke, John M., Shunxue Tang, Steven J. Knapp, and Loren H. Rieseberg. "Genetic Analysis of Sunflower Domestication." Genetics 161, no. 3 (2002): 1257–67. http://dx.doi.org/10.1093/genetics/161.3.1257.

Texte intégral
Résumé :
Abstract Quantitative trait loci (QTL) controlling phenotypic differences between cultivated sunflower and its wild progenitor were investigated in an F3 mapping population. Composite interval mapping revealed the presence of 78 QTL affecting the 18 quantitative traits of interest, with 2–10 QTL per trait. Each QTL explained 3.0–68.0% of the phenotypic variance, although only 4 (corresponding to 3 of 18 traits) had effects >25%. Overall, 51 of the 78 QTL produced phenotypic effects in the expected direction, and for 13 of 18 traits the majority of QTL had the expected effect. Despite be
Styles APA, Harvard, Vancouver, ISO, etc.
34

Goffinet, Bruno, and Sophie Gerber. "Quantitative Trait Loci: A Meta-analysis." Genetics 155, no. 1 (2000): 463–73. http://dx.doi.org/10.1093/genetics/155.1.463.

Texte intégral
Résumé :
Abstract This article presents a method to combine QTL results from different independent analyses. This method provides a modified Akaike criterion that can be used to decide how many QTL are actually represented by the QTL detected in different experiments. This criterion is computed to choose between models with one, two, three, etc., QTL. Simulations are carried out to investigate the quality of the model obtained with this method in various situations. It appears that the method allows the length of the confidence interval of QTL location to be consistently reduced when there are only ver
Styles APA, Harvard, Vancouver, ISO, etc.
35

Huang, W., Z. Xu, Y. Xiong, and B. Zuo. " QTL analysis for carcass composition and meat quality traits on SSC7q1.1-q1.4 region in Large White × Meishan F2 pigs." Czech Journal of Animal Science 57, No. 6 (2012): 283–89. http://dx.doi.org/10.17221/5963-cjas.

Texte intégral
Résumé :
Significant QTL for carcass and meat quality traits on Sus scrofa chromosome 7 (SSC7) were detected in various Meishan derived resource populations, especially on q1.1-q1.4 region. In order to confirm and narrow the QTL in this region, seven single-nucleotide polymorphisms (SNPs) and one insertion or deletion located in eight genes (BTNL1, SLC39A7, COL21A1, PPARD, GLP1R, MDFI, GNMT, and PLA2G7) were included for linkage mapping in a Large White × Meishan resource population, as well as two flanking microsatellite markers (SW2155 and SW352). Ten chromosome-wise significant QTL and two
Styles APA, Harvard, Vancouver, ISO, etc.
36

KIM, JONG-JOO, HONGHUA ZHAO, HAUKE THOMSEN, MAX F. ROTHSCHILD, and JACK C. M. DEKKERS. "Combined line-cross and half-sib QTL analysis of crosses between outbred lines." Genetical Research 85, no. 3 (2005): 235–48. http://dx.doi.org/10.1017/s0016672305007597.

Texte intégral
Résumé :
Data from an F2 cross between breeds of livestock are typically analysed by least squares line-cross or half-sib models to detect quantitative trait loci (QTL) that differ between or segregate within breeds. These models can also be combined to increase power to detect QTL, while maintaining the computational efficiency of least squares. Tests between models allow QTL to be characterized into those that are fixed (LC QTL), or segregating at similar (HS QTL) or different (CB QTL) frequencies in parental breeds. To evaluate power of the combined model, data wih various differences in QTL allele
Styles APA, Harvard, Vancouver, ISO, etc.
37

TAKAI, Toshiyuki, Akihiro OHSUMI, Yumiko ARAI, et al. "QTL Analysis of Leaf Photosynthesis in Rice." Japan Agricultural Research Quarterly: JARQ 47, no. 3 (2013): 227–35. http://dx.doi.org/10.6090/jarq.47.227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kenis, K., and J. Keulemans. "QTL ANALYSIS OF GROWTH CHARACTERISTICS IN APPLE." Acta Horticulturae, no. 663 (December 2004): 369–74. http://dx.doi.org/10.17660/actahortic.2004.663.63.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

K., Sato. "QTL analysis and related network in berley." Japanese Journal of Biometrics 17, no. 1/2 (1996): 79–90. http://dx.doi.org/10.5691/jjb.17.79.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Piepho, Hans-Peter, and Klaus Pillen. "Mixed modelling for QTL × environment interaction analysis." Euphytica 137, no. 1 (2004): 147–53. http://dx.doi.org/10.1023/b:euph.0000040512.84025.16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Vreugdenhil, D., M. Koornneel, and L. I. Sergeeva. "Use of QTL analysis in physiological research." Russian Journal of Plant Physiology 54, no. 1 (2007): 10–15. http://dx.doi.org/10.1134/s1021443707010025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hyne, V., and M. J. Kearsey. "QTL analysis: further uses of ‘marker regression’." Theoretical and Applied Genetics 91, no. 3 (1995): 471–76. http://dx.doi.org/10.1007/bf00222975.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kearsey, M. J., and V. Hyne. "QTL analysis: a simple ‘marker-regression’ approach." Theoretical and Applied Genetics 89, no. 6 (1994): 698–702. http://dx.doi.org/10.1007/bf00223708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Bhattacharjee, Samsiddhi, Chia-Ling Kuo, Nandita Mukhopadhyay, Guy N. Brock, Daniel E. Weeks, and Eleanor Feingold. "Robust Score Statistics for QTL Linkage Analysis." American Journal of Human Genetics 82, no. 3 (2008): 567–82. http://dx.doi.org/10.1016/j.ajhg.2007.11.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zeng, D. L., L. B. Guo, Y. B. Xu, K. Yasukumi, L. H. Zhu, and Q. Qian. "QTL analysis of seed storability in rice." Plant Breeding 125, no. 1 (2006): 57–60. http://dx.doi.org/10.1111/j.1439-0523.2006.01169.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ritter, E., N. N. Rodríguez-Medina, B. Velásquez, et al. "QTL (QUANTITATIVE TRAIT LOCI) ANALYSIS IN GUAVA." Acta Horticulturae, no. 849 (January 2010): 193–202. http://dx.doi.org/10.17660/actahortic.2010.849.21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Clarke, Jonathan H., Richard Mithen, James K. M. Brown, and Caroline Dean. "QTL analysis of flowering time inArabidopsis thaliana." Molecular and General Genetics MGG 248, no. 3 (1995): 278–86. http://dx.doi.org/10.1007/bf02191594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Teng, Sheng, Dali Zeng, Qian Qian, Yasufumi Kunihifo, Danian Huang, and Lihuang Zhu. "QTL analysis of rice low temperature germinability." Chinese Science Bulletin 46, no. 21 (2001): 1800–1803. http://dx.doi.org/10.1007/bf02900554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ben-Chaim, Arnon, Yelena Borovsky, Matthew Falise, et al. "QTL analysis for capsaicinoid content in Capsicum." Theoretical and Applied Genetics 113, no. 8 (2006): 1481–90. http://dx.doi.org/10.1007/s00122-006-0395-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Parh, D. K., D. R. Jordan, E. A. B. Aitken, et al. "QTL analysis of ergot resistance in sorghum." Theoretical and Applied Genetics 117, no. 3 (2008): 369–82. http://dx.doi.org/10.1007/s00122-008-0781-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!