Littérature scientifique sur le sujet « Quantum chaotics probabilistic »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantum chaotics probabilistic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Quantum chaotics probabilistic"

1

BISWAS, DEBABRATA. "EVOLUTION OF LIOUVILLE DENSITY IN BILLIARDS: THE QUANTUM CONNECTION." Modern Physics Letters B 20, no. 14 (2006): 795–813. http://dx.doi.org/10.1142/s0217984906011232.

Texte intégral
Résumé :
The study of classical Liouville density arises naturally in chaotic systems where a probabilistic treatment is more appropriate. In this review, we show that the evolution of a density projected onto the configuration space has a quantum connection in billiard systems. The eigenvalues and eigenfunctions of the concerned evolution operator have an approximate one-to-one correspondence with the quantum Neumann eigenvalues and eigenfunctions. For exceptional billiard shapes such as the rectangle, this correspondence is even exact. Despite the approximate nature of the correspondence, we demonstr
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cipolloni, Giorgio, László Erdős, and Dominik Schröder. "Eigenstate Thermalization Hypothesis for Wigner Matrices." Communications in Mathematical Physics 388, no. 2 (2021): 1005–48. http://dx.doi.org/10.1007/s00220-021-04239-z.

Texte intégral
Résumé :
AbstractWe prove that any deterministic matrix is approximately the identity in the eigenbasis of a large random Wigner matrix with very high probability and with an optimal error inversely proportional to the square root of the dimension. Our theorem thus rigorously verifies the Eigenstate Thermalisation Hypothesis by Deutsch (Phys Rev A 43:2046–2049, 1991) for the simplest chaotic quantum system, the Wigner ensemble. In mathematical terms, we prove the strong form of Quantum Unique Ergodicity (QUE) with an optimal convergence rate for all eigenvectors simultaneously, generalizing previous pr
Styles APA, Harvard, Vancouver, ISO, etc.
3

HARRISON, JONATHAN M., and KLAUS KIRSTEN. "VACUUM ENERGY OF SCHRÖDINGER OPERATORS ON METRIC GRAPHS." International Journal of Modern Physics: Conference Series 14 (January 2012): 357–66. http://dx.doi.org/10.1142/s2010194512007477.

Texte intégral
Résumé :
We present an integral formulation of the vacuum energy of Schrödinger operators on finite metric graphs. Local vertex matching conditions on the graph are classified according to the general scheme of Kostrykin and Schrader. While the vacuum energy of the graph can contain finite ambiguities the Casimir force on a bond with compactly supported potential is well defined. The vacuum energy is determined from the zeta function of the graph Schrödinger operator which is derived from an appropriate secular equation via the argument principle. A quantum graph has an associated probabilistic classic
Styles APA, Harvard, Vancouver, ISO, etc.
4

Okabe, Yasunori, and Akihiko Inoue. "The theory of KM2O-Langevin equations and applications to data analysis (II): Causal analysis (1)." Nagoya Mathematical Journal 134 (June 1994): 1–28. http://dx.doi.org/10.1017/s0027763000004827.

Texte intégral
Résumé :
It is not too much to say that the problem of finding a cause-and-effect relationship is a fascinating and eternal theme in both natural and social sciences. It is often difficult to decide whether one is the cause of another in two related phenomena, but it is an important problem. It is related to the internal structure of phenomena which generate deterministic or random changes as time passes. We note that the phenomena to be considered are often not deterministic but random. For example, in physical systems such as quantum mechanics or chaotic classical mechanics, it is well known that cer
Styles APA, Harvard, Vancouver, ISO, etc.
5

Petrenko, A. S. "METHOD FOR CONSTRUCTING POST-QUANTUM ALGORITHMS OF EDS WITH TWO HIDDEN GROUPS." Voprosy kiberbezopasnosti 2, no. 66 (2025): 52–63. https://doi.org/10.21681/2311-3456-2025-2-52-63.

Texte intégral
Résumé :
Purpose of work is to develop and substantiate a method for constructing post-quantum EDS algorithms based on finite noncommutative associative algebras, which provides enhanced signature randomization due to double groups and chaotic mappings, compact key sizes and high performance, as well as automated evolutionary design of the multiplication table structure. Research methods: algebraic modeling of noncommutative structures and computer verification of the associativity of multiplication tables, mathematical modeling of the signature process and probabilistic assessment of cryptographic str
Styles APA, Harvard, Vancouver, ISO, etc.
6

Karwasz, Grzegorz. "On Determinism, Causality, and Free Will: Contribution from Physics." Roczniki Filozoficzne 69, no. 4 (2021): 5–24. http://dx.doi.org/10.18290/rf21694-1.

Texte intégral
Résumé :
Determinism, causality, chance, free will and divine providence form a class of interlaced problems lying in three domains: philosophy, theology, and physics. Recent article by Dariusz Łukasiewicz in Roczniki Filozoficzne (no. 3, 2020) is a great example. Classical physics, that of Newton and Laplace, may lead to deism: God created the world, but then it goes like a mechanical clock. Quantum mechanics brought some “hope” for a rather naïve theology: God acts in gaps between quanta of indetermination. Obviously, any strict determinism jeopardizes the existence of free will. Yes, but only if hum
Styles APA, Harvard, Vancouver, ISO, etc.
7

CASUSO, E. "INTEGRAL TREATMENT FOR TIME EVOLUTION: THE GENERAL INTERACTIVITY." International Journal of Modern Physics A 14, no. 20 (1999): 3239–52. http://dx.doi.org/10.1142/s0217751x99001524.

Texte intégral
Résumé :
Assuming that the unpredictability associated with many dynamical systems is an artefact of the differential treatment of their time evolution, we propose here an integral treatment as an alternative. We make the assumption that time is two-dimensional, and that the time distribution in the past of observables characterizing the dynamical system, is some characteristic "projection" of its time distribution in the future. We show here how this method can be used to predict the time evolution of several dynamically complex systems over long time intervals. The present work can be considered as t
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rabbani, Hassan. "Quantum-Chaotic Emotional Evolution A Mathematical and Computational Framework." May 8, 2025. https://doi.org/10.5281/zenodo.15368105.

Texte intégral
Résumé :
Classical psychology and neuroscience reduce emotions to neurochemical patterns and cognitive reactions. But such views lack explanatory power for recursive, oscillatory, and unpredictable emotional transitions. Recent findings in quantum cognition hint that emotional phenomena may exhibit interference, superposition, and recursive collapse—properties that are neither deterministic nor classically probabilistic. The Hypothesis: • Emotions evolve as dynamic quantum wavefunctions. • Their transitions are not arbitrary, but constrained by an internal logic—a recursive matrix
Styles APA, Harvard, Vancouver, ISO, etc.
9

Casagrande, Heitor P., Bo Xing, William J. Munro, Chu Guo, and Dario Poletti. "Tensor-networks-based learning of probabilistic cellular automata dynamics." Physical Review Research 6, no. 4 (2024). http://dx.doi.org/10.1103/physrevresearch.6.043202.

Texte intégral
Résumé :
Algorithms developed to solve many-body quantum problems, like tensor networks, can turn into powerful quantum-inspired tools to tackle issues in the classical domain. This work focuses on matrix product operators, a prominent numerical technique to study many-body quantum systems, especially in one dimension. It has been previously shown that such a tool can be used for classification, learning of deterministic sequence-to-sequence processes, and generic quantum processes. We further develop a matrix product operator algorithm to learn probabilistic sequence-to-sequence processes and apply th
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, Kyle, Shuvro Chowdhury, and Kerem Y. Camsari. "Noise-augmented chaotic Ising machines for combinatorial optimization and sampling." Communications Physics 8, no. 1 (2025). https://doi.org/10.1038/s42005-025-01945-1.

Texte intégral
Résumé :
Abstract Ising machines are hardware accelerators for combinatorial optimization and probabilistic sampling, using stochasticity to explore spin configurations and avoid local minima. We refine the previously proposed coupled chaotic bits (c-bits), which operate deterministically, by introducing noise. This improves performance in combinatorial optimization, achieving algorithmic scaling comparable to probabilistic bits (p-bits). We show that c-bits follow the quantum Boltzmann law in a 1D transverse field Ising model. Furthermore, c-bits exhibit critical dynamics similar to p-bits in 2D Ising
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Quantum chaotics probabilistic"

1

Abou Jaoudé, Abdo. "The Paradigm of Complex Probability and Quantum Mechanics: The Quantum Harmonic Oscillator with Gaussian Initial Condition – The Position Wavefunction." In Simulation Modeling - Recent Advances, New Perspectives, and Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1001986.

Texte intégral
Résumé :
In the current work, we extend and incorporate in the five-axioms probability system of Andrey Nikolaevich Kolmogorov set up in 1933 the imaginary set of numbers and this by adding three supplementary axioms. Consequently, any stochastic experiment can thus be achieved in the extended complex probabilities set C which is the sum of the real probabilities set R and the imaginary probabilities set M. The purpose here is to evaluate the complex probabilities by considering additional novel imaginary dimensions to the experiment occurring in the “real” laboratory. Therefore, the random phenomenon
Styles APA, Harvard, Vancouver, ISO, etc.
2

Abou Jaoudé, Abdo. "The Paradigm of Complex Probability and Quantum Mechanics: The Quantum Harmonic Oscillator with Gaussian Initial Condition – The Momentum Wavefunction and The Wavefunction Entropies." In Simulation Modeling - Recent Advances, New Perspectives, and Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1001985.

Texte intégral
Résumé :
The system of probability axioms of Andrey Nikolaevich Kolmogorov put forward in 1933 can be developed to encompass the set of imaginary numbers after adding to his established five axioms a supplementary three axioms. Therefore, any probabilistic phenomenon can thus be performed in what is now the set of complex probabilities C which is the sum of the real set of probabilities R and the complementary and associated and corresponding imaginary set of probabilities M. The aim here is to compute the complex probabilities by taking into consideration additional novel imaginary dimensions to the p
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!