Littérature scientifique sur le sujet « Quantum optics Measurement »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantum optics Measurement ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Quantum optics Measurement"
Walls, DF. « Quantum Measurements in Atom Optics ». Australian Journal of Physics 49, no 4 (1996) : 715. http://dx.doi.org/10.1071/ph960715.
Texte intégralHradil, Z. « Phase measurement in quantum optics ». Quantum Optics : Journal of the European Optical Society Part B 4, no 2 (avril 1992) : 93–108. http://dx.doi.org/10.1088/0954-8998/4/2/004.
Texte intégralXavier, Jolly, Deshui Yu, Callum Jones, Ekaterina Zossimova et Frank Vollmer. « Quantum nanophotonic and nanoplasmonic sensing : towards quantum optical bioscience laboratories on chip ». Nanophotonics 10, no 5 (1 mars 2021) : 1387–435. http://dx.doi.org/10.1515/nanoph-2020-0593.
Texte intégralWalls, DF, MJ Collett, EP Storey et SM Tan. « Quantum Measurements in Atomic Optics ». Australian Journal of Physics 46, no 1 (1993) : 61. http://dx.doi.org/10.1071/ph930061.
Texte intégralChabaud, Ulysse, Damian Markham et Adel Sohbi. « Quantum machine learning with adaptive linear optics ». Quantum 5 (5 juillet 2021) : 496. http://dx.doi.org/10.22331/q-2021-07-05-496.
Texte intégralMolotkov, S. N. « Homodyne detection in quantum optics : deterministic extractors and quantum random number generators on ‘vacuum fluctuations’ ». Laser Physics 32, no 5 (7 avril 2022) : 055202. http://dx.doi.org/10.1088/1555-6611/ac5ccc.
Texte intégralKrotkov, Robert. « Quantum Optics, Experimental Gravitation, and Measurement Theory ». American Journal of Physics 53, no 8 (août 1985) : 795–96. http://dx.doi.org/10.1119/1.14327.
Texte intégralKOASHI, Masato. « Recent Progress in Quantum Optics. Quantum Cryptography and Measurement of Quantum States. » Review of Laser Engineering 28, no 10 (2000) : 677–81. http://dx.doi.org/10.2184/lsj.28.677.
Texte intégralCastro Santis, Ricardo. « Quantum stochastic dynamics in multi-photon optics ». Infinite Dimensional Analysis, Quantum Probability and Related Topics 17, no 01 (mars 2014) : 1450007. http://dx.doi.org/10.1142/s0219025714500076.
Texte intégralChen, Sixin, Taxue Ma, Qian Yu, Pengcheng Chen, Xinzhe Yang, Xuewei Wu, Hai Sang et al. « A perspective on the manipulation of orbital angular momentum states in nonlinear optics ». Applied Physics Letters 122, no 4 (23 janvier 2023) : 040503. http://dx.doi.org/10.1063/5.0135224.
Texte intégralThèses sur le sujet "Quantum optics Measurement"
Cooper, Merlin Frederick Wilmot. « Measurement and manipulation of quantum states of travelling light fields ». Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:79164748-ebb3-48e2-b4d4-1a4766d29217.
Texte intégralPregnell, Kenneth Lyell, et n/a. « Retrodictive Quantum State Engineering ». Griffith University. School of Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20041029.134933.
Texte intégralKozlowski, Wojciech. « Competition between weak quantum measurement and many-body dynamics in ultracold bosonic gases ». Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8da45dd9-27f9-42b6-8bae-8001d0154966.
Texte intégralElouard, Cyril. « Thermodynamics of quantum open systems : applications in quantum optics and optomechanics ». Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY046/document.
Texte intégralThermodynamics was developed in the XIXth century to provide a physical description to engines and other macroscopic thermal machines. Since then, progress in nanotechnologies urged to extend these formalism, initially designed for classical systems, to the quantum world. During this thesis, I have built a formalism to study the stochastic thermodynamics of quantum systems, in which quantum measurement plays a central role : like the thermal reservoir of standard stochastic thermodynamics, it is the primary source of randomness in the system's dynamics. I first studied projective measurement as a thermodynamic process. I evidenced that measurement is responsible for an uncontroled variation of the system's energy that I called quantum heat, and also a production of entropy. As a proof of concept, I proposed an engine extracting work from the measurement-induced quantum fluctuations. Then, I extended this formalism to generalized measurements, which allowed to describe open quantum systems (i.e. in contact with reservoirs). I defined work, heat and entropy production for single realizations of thermodynamic protocols, and retrieved that these quantities obey fluctuation theorems. I applied this formalism to the canonical situation of quantum optics, i.e. a Qubit coupled to a laser and a the vacuum. Finally, I studied a promising platform to test Qubit's thermodynamics: a hybrid optomechanical system.The formalism developed in this thesis could be of interest for the quantum thermodynamics community as it enables to characterize quantum heat engines and compare their performances to their classical analogs. Furthermore, as it sets quantum measurement as a thermodynamic process, it pave the ways to a new kind of thermodynamic machines, exploiting the specificities of quantum realm in an unprecedented way
Buchler, Benjamin Caird. « Electro-optic control of quantum measurements ». View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20020527.131758/index.html.
Texte intégralWebb, James Engineering & Information Technology Australian Defence Force Academy UNSW. « The measurement, creation and manipulation of quantum optical states via photodetection ». Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & ; Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43686.
Texte intégralFolland, Thomas. « Frequency control of terahertz quantum cascade lasers : theory and measurement ». Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/frequency-control-of-terahertz-quantum-cascade-lasers-theory-and-measurement(d4c55769-f053-4b79-aed3-e2fec575adde).html.
Texte intégralArzani, Francesco. « Measurement based quantum information with optical frequency combs ». Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE005/document.
Texte intégralThe present manuscript reports theoretical investigations about the use of recently developed experimental techniques in the realization of quantum information protocols with continuous variables. The focus of the work is on the multi-mode Gaussian states produced by spontaneous parametric down-conversion of optical frequency combs. Such setup allows to deterministicallyengineer many different Gaussian states of light. The output state can be de-Gaussified subtracting or adding a photon coherently on a superposition of modes and finally measured with pulse-shaped and wavelength-multiplexed homodyne detection. The thesis encompasses three projects. The first concerns the optimization of the spectrum of the pump laser field to engineer the Gaussian output state. We developed mathematical techniques to treat spectral profiles with arbitrary amplitude and spectral phase. We thenran an optimization algorithm to find the spectra maximizing several interesting properties of the state of the down-converted field. A particular emphasis was put on the production of continuous-variable cluster states. The optimizations were developed in such a way as to ensure the experimental feasibility of the optimized pump spectra. In the second project we studied how the non-Gaussian states produced subtracting a photon from a squeezed state can be used for quantum computation. We propose a protocol inspired by the measurement-based paradigm for quantum computation combining the photon subtracted states and homodyne detectionto approximate unitary non-Gaussian operations. We show that the same results can be obtained with projective measurements onsingle-photon states. Finally, the third project deals with quantum secret sharing. In quantum secret sharing schemes a dealer wants to share information encoded in some quantum system with a group of players in such a way that subsets of players need to collaborate if they want to retrieve the information. We devised a secret sharing protocol that could be mapped to the experimental setups developed in our group and participated in the formulation of an experimental proof of principle of such protocol. Starting from this we derived general results for sharing and reconstructing arbitrary quantum states using Gaussian resources
Thomas-Peter, Nicholas. « Quantum enhanced precision measurement and information processing with integrated photonics ». Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7bd47582-d32f-4d07-9e90-4978c32cf14e.
Texte intégralMazzucchi, Gabriel. « Conditional many-body dynamics and quantum control of ultracold fermions and bosons in optical lattices coupled to quantized light ». Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:6c6eddac-41de-476d-851e-6630907965e6.
Texte intégralLivres sur le sujet "Quantum optics Measurement"
Tombesi, P., et D. F. Walls. Quantum measurements in optics. New York : Springer Science, 1992.
Trouver le texte intégralInternational Workshop on Quantum Communications and Measurement (1994 Nottingham, England). Quantum communications and measurement. New York : Plenum Press, 1995.
Trouver le texte intégralTombesi, P., et O. Hirota. Quantum communication, computing, and measurement 3. New York : Kluwer Academic, 2002.
Trouver le texte intégralInternational Conference on Quantum Communication, Measurement, and Computing (4th 1998 Northwestern University, Evanston, Ill.). Quantum communication, computing and measurement 2. New York : Kluwer Academic/Plenum Publishers, 2000.
Trouver le texte intégralInternational Conference on Quantum Communication, Measurement, and Computing (4th 1998 Northwestern University, Evanston, Ill.). Quantum communication, computing and measurement 2. New York : Kluwer Academic/Plenum Publishers, 2000.
Trouver le texte intégralInternational Conference on Quantum Communication, Measurement, and Computing (4th 1998 Northwestern University). Quantum communication, computing and measurement 2. New York : Kluwer Academic, 2002.
Trouver le texte intégralP, Belavkin V., Hirota O et Hudson R. L. 1960-, dir. Quantum communications and measurement : [proceedings of an International Workshop on Quantum Communications and Measurement, held July 11-16, 1994, in Nottingham, England]. New York : Plenum Press, 1995.
Trouver le texte intégralP, Tombesi, Hirota O. 1948- et International Conference on Quantum Communication, Measurement, and Computing (5th : 2000 : Capri, Italy), dir. Quantum communication, computing, and measurement 3. New York : Kluwer Academic/Plenum Publishers, 2001.
Trouver le texte intégralInternational, Conference on Quantum Communication Measurement and Computing (8th 2006 Tsukuba-shi Japan). Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing. [Tokyo] : National Institute of Information and Communications Technology, 2007.
Trouver le texte intégralInternational Conference on Quantum Communication, Measurement, and Computing (8th 2006 Tsukuba-shi, Japan). Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing. Tokyo] : National Institute of Information and Communications Technology, 2007.
Trouver le texte intégralChapitres de livres sur le sujet "Quantum optics Measurement"
Walls, D. F., et G. J. Milburn. « Quantum Coherence and Measurement Theory ». Dans Quantum Optics, 297–314. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79504-6_16.
Texte intégralStenholm, Stig. « Measurement Aspects of Quantum Optics ». Dans Quantum Chaos — Quantum Measurement, 231–40. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7979-7_18.
Texte intégralPeřina, Jan, Zdeněk Hradil et Branislav Jurčo. « Quantum theory of measurement ». Dans Quantum Optics and Fundamentals of Physics, 54–115. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0932-1_3.
Texte intégralGarraway, B. M., et P. L. Knight. « Stochastic Simulations of Dissipation in Quantum Optics : Quantum Superpositions ». Dans Quantum Communications and Measurement, 463–77. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1391-3_46.
Texte intégralBrecha, R. J., et H. Walther. « The Quantum Measurement Process and the One-Atom Maser ». Dans Quantum Measurements in Optics, 93–104. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_8.
Texte intégralYamamoto, Yoshihisa, Wayne H. Richardson et Susumu Machida. « Quantum Mechanical Watch-Dog Effect and Measurement-Induced State Reduction in a Semiconductor Laser ». Dans Quantum Measurements in Optics, 65–84. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_6.
Texte intégralGrangier, Philippe, Jean-François Roch et Gérard Roger. « Quantum Non-Demolition Measurement of an Optical Intensity in a Three-Level Atomic Non-Linear System ». Dans Quantum Measurements in Optics, 85–92. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_7.
Texte intégralDavidovich, Luiz. « Decoherence and Quantum-State Measurement in Quantum Optics ». Dans Decoherence and Entropy in Complex Systems, 268–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-40968-7_19.
Texte intégralHerkommer, A. M., H. J. Carmichael et W. P. Schleich. « Localization of Atoms by Homodyne Measurement ». Dans Coherence and Quantum Optics VII, 543–44. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_144.
Texte intégralMilburn, G. J., et B. C. Sanders. « Preparation of Nonclassical States by Conditional Measurement ». Dans Coherence and Quantum Optics VI, 753–57. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0847-8_138.
Texte intégralActes de conférences sur le sujet "Quantum optics Measurement"
Boyd, Robert W. « Quantum Nonlinear Optics : Nonlinear Optics Meets the Quantum World ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/qim.2014.qtu2a.1.
Texte intégralRoussel, Benjamin, Clément Cabart et Pascal Degiovanni. « Quantum signal processing for electron quantum optics ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qw5a.1.
Texte intégralXiang, Guoyong. « Quantum collective measurement ». Dans Quantum and Nonlinear Optics VII, sous la direction de Kebin Shi, Chuan-Feng Li et Dai-Sik Kim. SPIE, 2020. http://dx.doi.org/10.1117/12.2575258.
Texte intégralZadeh, Iman Esmaeil, Ali Elshaari, Johannes W. N. Los, Ronan Gourgues, Julien Zichi, Sander Dorenbos, Michael E. Reimer et al. « Scalable quantum optics with nanowires ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f4a.5.
Texte intégralLipson, Michal. « Silicon Photonic Platform for Quantum Optics ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/qim.2013.w5a.1.
Texte intégralAaronson, Scott, et Alex Arkhipov. « The Computational Complexity of Linear Optics ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/qim.2014.qth1a.2.
Texte intégralYokoyama, Shota, Nicola Dalla Pozza, Takahiro Serikawa, Katanya B. Kuntz, Trevor A. Wheatley, Daoyi Dong, Elanor H. Huntington et Hidehiro Yonezawa. « The Quantum Entanglement of Measurement ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/fio.2017.fth3e.6.
Texte intégralHayat, Alex, Pavel Ginzburg, David Neiman, Serge Rosenblum et Meir Orenstein. « Photon-Hole Quantum Nondemolition Measurement ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2008. http://dx.doi.org/10.1364/fio.2008.fmh7.
Texte intégralGaeta, Alex. « Nonlinear Optics at the Few-Photon Level ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/qim.2013.th1.2.
Texte intégralChakhmakhchyan, Levon, et Nicolas J. Cerf. « Simulating Universal Gaussian Circuits with Linear Optics ». Dans Quantum Information and Measurement. Washington, D.C. : OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f4b.4.
Texte intégralRapports d'organisations sur le sujet "Quantum optics Measurement"
Pfeifer, K. B., et M. W. Jenkins. A fiber optic test system for quantum efficiency measurements. Office of Scientific and Technical Information (OSTI), mai 1989. http://dx.doi.org/10.2172/5988907.
Texte intégral