Littérature scientifique sur le sujet « Rain Interarrival Times Modeling »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Rain Interarrival Times Modeling ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Rain Interarrival Times Modeling"
Dharmaraja, S., K. S. Trivedi et D. Logothetis. « Performance modeling of wireless networks with generally distributed handoff interarrival times ». Computer Communications 26, no 15 (septembre 2003) : 1747–55. http://dx.doi.org/10.1016/s0140-3664(03)00044-6.
Texte intégralEspinosa, Luis Angel, Maria Manuela Portela, João Dehon Pontes Filho, Ticiana Marinho de Carvalho Studart, João Filipe Santos et Rui Rodrigues. « Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island ». Water 11, no 12 (26 novembre 2019) : 2489. http://dx.doi.org/10.3390/w11122489.
Texte intégralMontoro-Cazorla, Delia, et Rafael Pérez-Ocón. « Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures : A Matrix-Analytic Approach ». Mathematics 10, no 11 (2 juin 2022) : 1902. http://dx.doi.org/10.3390/math10111902.
Texte intégralBaiamonte, Giorgio, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris et Tommaso Martini. « Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe ». Advances in Statistical Climatology, Meteorology and Oceanography 10, no 1 (22 mars 2024) : 51–67. http://dx.doi.org/10.5194/ascmo-10-51-2024.
Texte intégralHADJI, Sofiane. « A coupled models Hydrodynamics - Multi headed Deep convolutional neural network for rapid forecasting large-scale flood inundation ». International Journal of Engineering and Computer Science 10, no 11 (21 novembre 2021) : 25420–30. http://dx.doi.org/10.18535/ijecs/v10i11.4636.
Texte intégralSchleiss, Marc. « Scaling and Distributional Properties of Precipitation Interamount Times ». Journal of Hydrometeorology 18, no 4 (1 avril 2017) : 1167–84. http://dx.doi.org/10.1175/jhm-d-16-0221.1.
Texte intégralKRISHNAMURTI, T. N., T. S. V. VIJAYA KUMAR, BRIAN MACKEY, NIHAT CUBUCKU et ROBERT S. ROSS. « Current thrusts on TRMM and SSM/I based modeling studies on heavy rains and flooding episodes ». MAUSAM 54, no 1 (18 janvier 2022) : 121–40. http://dx.doi.org/10.54302/mausam.v54i1.1497.
Texte intégralHelalia, Sarah A., Ray G. Anderson, Todd H. Skaggs et Jirka Šimůnek. « Impact of Drought and Changing Water Sources on Water Use and Soil Salinity of Almond and Pistachio Orchards : 2. Modeling ». Soil Systems 5, no 4 (24 septembre 2021) : 58. http://dx.doi.org/10.3390/soilsystems5040058.
Texte intégralGrabowski, Wojciech W., et Hugh Morrison. « Modeling Condensation in Deep Convection ». Journal of the Atmospheric Sciences 74, no 7 (29 juin 2017) : 2247–67. http://dx.doi.org/10.1175/jas-d-16-0255.1.
Texte intégralKiewiet, Leonie, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf et Sarah E. Godsey. « Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone ». Hydrology and Earth System Sciences 26, no 10 (1 juin 2022) : 2779–96. http://dx.doi.org/10.5194/hess-26-2779-2022.
Texte intégralThèses sur le sujet "Rain Interarrival Times Modeling"
Martini, Tommaso. « statistical and probabilistic approaches to hydrological data analysis : rainfall patterns, copula-like models and first passage timeapproximations ». Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3051.
Texte intégralAnalysis of rainfall data and subsequent modeling of the many variables concerning rainfall is fundamental to many areas such as agricultural, ecological and engineering disciplines and, due to the complexity of the underlying hydrological system, it relies heavily on historical records. Daily rainfall series obtained from rain gauge networks are arguably the most used. A reliable and flexible single site model is the fundamental starting point of any more complex multi-site model taking into account the spatial correlations arising when observing a dense network of stations. Given the ever-growing interest in analysing the alternance between period of continuous rainfall and periods of drought, two-part discrete time models accounting separately for rainfall occurrence and rainfall amount processes are an useful tool to describe the behaviour of daily rainfall at a single station. In this context, we initially investigate the modeling of daily rainfall interarrival times through a family of discrete probability distributions known as the Hurwitz-Lerch-Zeta family, along with two other distributions which are deeply related to the latter and have never been considered with this aim. Building up on the relationships between the interarrival times and certain other temporal variables, a methodology for their modeling and empirical analysis is detailed. The latter procedure and the fitting performance of the aforementioned distributions is shown on a dataset composed of a variety of rainfall regimes.Moreover, being able to provide reliable modeling of rainfall related variables is essential in the well known issue of climate change. A starting point in detecting change is the multivariate modeling of rainfall variables, as a perceivable shift in the inter-relationships between these could reflect climate changes in a region. In this context, copulas are well known and valued for their flexibility. However, they lose their charm when dealing with discrete random vectors. In this case, the uniqueness of the copula is compromised, leading to inconsistencies which basically break down the theoretical underpinnings of the inferential procedures commonly used in the continuous case. Recently, Gery Geenens made a compelling case for a new approach, grounding its beliefs in historical ideas regarding the statistical analysis of contingency tables. The theoretical insights he gives, coupled with a computational tool known as iterative proportional fitting procedure, open up the path to our development of novel (semi-parametric or parametric) models for finitely supported bivariate discrete random vectors. With this aim, we prove a sklar-like decomposition of a bivariate discrete probability mass function between its margins and a copula probability mass function, on which the previously mentioned models hinge upon. Related inferential and goodness of fit procedures are investigated, both theoretically and empirically.Of the same significance as modeling the behavior of rainfall is its impact on water bodies and land surfaces. For istance, understanding the time it takes for rainfall to cause river levels to exceed a flood stage is of paramount importance for flood prediction and management. More in general, it is often crucial to determine the time at which certain hydrological thresholds are crossed by some hydrological quantity. When the latter's value in time is modelled by a stochastic process, the problem mentioned above can be restated in terms of the well known first passage time problem. In this context, a practical closed form computation of the first passage time probability density and distribution function is a delicate issue. Regarding this, we propose an approximation method based on a series expansion. Theoretical results are accompanied by discussions on the computational aspects. Extensive numerical experiments are carried out for the geometric Brownian motion and the Cox-Ingersoll-Ross process
Suravaram, Kiran R. « Modeling the Interarrival Times for Non-Signalized Freeway Entrance Ramps ». Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1183662416.
Texte intégralChapitres de livres sur le sujet "Rain Interarrival Times Modeling"
Kambo, N. S., Dervis Z. Deniz et Taswar Iqbal. « Measurement–Based MMPP Modeling of Voice Traffic in Computer Networks Using Moments of Packet Interarrival Times ». Dans Networking — ICN 2001, 570–78. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-47734-9_56.
Texte intégralActes de conférences sur le sujet "Rain Interarrival Times Modeling"
Hirsh, N. « Measured characteristics of process interarrival times across a LAN ». Dans Fifth IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks. IEEE, 1994. http://dx.doi.org/10.1109/camad.1994.765676.
Texte intégralRego, Vale´ria S., Alexandre S. Hansen, Eduardo M. Florence et Marcelo J. B. Teixeira. « Scour Studies for a Gas Pipeline Crossing in Negro River, Brazil ». Dans ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80064.
Texte intégralPohl, Martin, Johannes Riemenschneider et Hans Peter Monner. « Design and Experimental Investigation of a Flexible Trailing Edge for Wind Energy Turbine Blades ». Dans ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2256.
Texte intégral