Littérature scientifique sur le sujet « Rainfall Intensity Modeling »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Rainfall Intensity Modeling ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Rainfall Intensity Modeling"
Sadeghi, Hamed, Farshad Yazdani Bene Kohal, Mostafa Gholami, Pouya Alipanahi et Dongri Song. « Hydro-mechanical modeling of a vegetated slope subjected to rainfall ». E3S Web of Conferences 382 (2023) : 13004. http://dx.doi.org/10.1051/e3sconf/202338213004.
Texte intégralWidowati, Adi Putri Anisa. « Hydraulic and Hydrologic Modeling of Steep Channel of Putih River, Magelang District, Central Java Province, Indonesia ». Journal of the Civil Engineering Forum 3, no 3 (18 septembre 2017) : 125. http://dx.doi.org/10.22146/jcef.26507.
Texte intégralSumargo, Bagus, Dian Handayani, Alvi Pauziah Lubis, Irman Firmasyah et Ika Yuni Wulansari. « Detection of Factors Affecting Rainfall Intensity in Jakarta ». Jurnal Ilmu Lingkungan 23, no 1 (8 janvier 2024) : 133–40. https://doi.org/10.14710/jil.23.1.133-140.
Texte intégralNégyesi, Klaudia, et Eszter Dóra Nagy. « The connection between time of concentration and rainfall intensity based on rainfall-runoff modeling ». Időjárás 128, no 4 (2024) : 439–50. https://doi.org/10.28974/idojaras.2024.4.3.
Texte intégralHermawan, Koko, Khori Sugianti, Antonina Martireni, Nugroho Aji Satrio et Yunarto. « Spatial and Temporal Analysis Prediction of Landslide Susceptibility Using Rainfall Infiltration and Grid-based Slope Stability Methods in West Bandung area of West Java-Indonesia ». IOP Conference Series : Earth and Environmental Science 1173, no 1 (1 mai 2023) : 012031. http://dx.doi.org/10.1088/1755-1315/1173/1/012031.
Texte intégralDikko, H. G. « Modeling the Distribution of Rainfall Intensity using Quarterly Data ». IOSR Journal of Mathematics 9, no 1 (2013) : 11–16. http://dx.doi.org/10.9790/5728-0911116.
Texte intégralDan'azumi. « Modeling the Distribution of Rainfall Intensity using Hourly Data ». American Journal of Environmental Sciences 6, no 3 (1 mars 2010) : 238–43. http://dx.doi.org/10.3844/ajessp.2010.238.243.
Texte intégralKumar, Pappu, Madhusudan Narayan et Mani Bhushan. « Rainfall Intensity Duration Frequency Curve Statistical Analysis and Modeling for Patna, Bihar ». BOHR International Journal of Civil Engineering and Environmental Science 2, no 1 (2023) : 65–73. http://dx.doi.org/10.54646/bicees.008.
Texte intégralKumar, Pappu, Madhusudan Narayan et Mani Bhushan. « Rainfall Intensity Duration Frequency Curve Statistical Analysis and Modeling for Patna, Bihar ». BOHR International Journal of Civil Engineering and Environmental Science 2, no 1 (2023) : 65–73. http://dx.doi.org/10.54646/bijcees.008.
Texte intégralKumar, Pappu, Madhusudan Narayan et Mani Bhushan. « Rainfall intensity duration frequency curve statistical analysis and modeling for Patna, Bihar ». BOHR International Journal of Civil Engineering and Environmental Science 1, no 2 (2023) : 66–75. http://dx.doi.org/10.54646/bijcees.2023.08.
Texte intégralThèses sur le sujet "Rainfall Intensity Modeling"
Mayeux, Brian Clifford, et Brian Clifford Mayeux. « The relative importance of rainfall intensity versus saturated hydraulic conductivity for runoff modeling of semi-arid watersheds ». Thesis, The University of Arizona, 1995. http://hdl.handle.net/10150/626771.
Texte intégralMartini, Tommaso. « statistical and probabilistic approaches to hydrological data analysis : rainfall patterns, copula-like models and first passage timeapproximations ». Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3051.
Texte intégralAnalysis of rainfall data and subsequent modeling of the many variables concerning rainfall is fundamental to many areas such as agricultural, ecological and engineering disciplines and, due to the complexity of the underlying hydrological system, it relies heavily on historical records. Daily rainfall series obtained from rain gauge networks are arguably the most used. A reliable and flexible single site model is the fundamental starting point of any more complex multi-site model taking into account the spatial correlations arising when observing a dense network of stations. Given the ever-growing interest in analysing the alternance between period of continuous rainfall and periods of drought, two-part discrete time models accounting separately for rainfall occurrence and rainfall amount processes are an useful tool to describe the behaviour of daily rainfall at a single station. In this context, we initially investigate the modeling of daily rainfall interarrival times through a family of discrete probability distributions known as the Hurwitz-Lerch-Zeta family, along with two other distributions which are deeply related to the latter and have never been considered with this aim. Building up on the relationships between the interarrival times and certain other temporal variables, a methodology for their modeling and empirical analysis is detailed. The latter procedure and the fitting performance of the aforementioned distributions is shown on a dataset composed of a variety of rainfall regimes.Moreover, being able to provide reliable modeling of rainfall related variables is essential in the well known issue of climate change. A starting point in detecting change is the multivariate modeling of rainfall variables, as a perceivable shift in the inter-relationships between these could reflect climate changes in a region. In this context, copulas are well known and valued for their flexibility. However, they lose their charm when dealing with discrete random vectors. In this case, the uniqueness of the copula is compromised, leading to inconsistencies which basically break down the theoretical underpinnings of the inferential procedures commonly used in the continuous case. Recently, Gery Geenens made a compelling case for a new approach, grounding its beliefs in historical ideas regarding the statistical analysis of contingency tables. The theoretical insights he gives, coupled with a computational tool known as iterative proportional fitting procedure, open up the path to our development of novel (semi-parametric or parametric) models for finitely supported bivariate discrete random vectors. With this aim, we prove a sklar-like decomposition of a bivariate discrete probability mass function between its margins and a copula probability mass function, on which the previously mentioned models hinge upon. Related inferential and goodness of fit procedures are investigated, both theoretically and empirically.Of the same significance as modeling the behavior of rainfall is its impact on water bodies and land surfaces. For istance, understanding the time it takes for rainfall to cause river levels to exceed a flood stage is of paramount importance for flood prediction and management. More in general, it is often crucial to determine the time at which certain hydrological thresholds are crossed by some hydrological quantity. When the latter's value in time is modelled by a stochastic process, the problem mentioned above can be restated in terms of the well known first passage time problem. In this context, a practical closed form computation of the first passage time probability density and distribution function is a delicate issue. Regarding this, we propose an approximation method based on a series expansion. Theoretical results are accompanied by discussions on the computational aspects. Extensive numerical experiments are carried out for the geometric Brownian motion and the Cox-Ingersoll-Ross process
DI, NAPOLI MARIANO. « Spatial prediction of landslide susceptibility/intensity through advanced statistical approaches implementation : applications to the Cinque Terre (Eastern Liguria, Italy) ». Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1076506.
Texte intégralMasingi, Vusi Ntiyiso. « Modeling long-term monthly rainfall variability in selected provinces of South Africa using extreme value distributions ». Thesis, 2021. http://hdl.handle.net/10386/3457.
Texte intégralSeveral studies indicated a growing trend in terms of frequency and severity of extreme events. Extreme rainfall could cause disasters that lead to loss of property and life. The aim of the study was to model the monthly rainfall variability in selected provinces of South Africa using extreme value distributions. This study investigated the best-fit probability distributions in the five provinces of South Africa. Five probability distributions: gamma, Gumbel, log-normal, Pareto and Weibull, were fitted and the best was selected from the five distributions for each province. Parameters of these distributions were estimated by the method of maximum likelihood estimators. Based on the Akaike information criteria (AIC) and Bayesian information criteria (BIC), the Weibull distribution was found to be the best-fit probability distribution for Eastern Cape, KwaZulu-Natal, Limpopo and Mpumalanga, while in Gauteng the best-fit probability distribution was found to be the gamma distribution. Monthly rainfall trends detected using the Mann–Kendall test revealed significant monotonic decreasing long-term trend for Eastern Cape, Gauteng and KwaZulu-Natal, and insignificant monotonic decreasing longterm trends for Limpopo and Mpumalanga. Non-stationary generalised extreme value distribution (GEVD) and non-stationary generalized Pareto distribution (GPD) were applied to model monthly rainfall data. The deviance statistic and likelihood ratio test (LRT) were used to select the most appropriate model. Model fitting supported stationary GEVD model for Eastern Cape, Gauteng and KwaZulu-Natal. On the other hand, model fitting supported non-stationary GEVD models for maximum monthly rainfall with nonlinear quadratic trend in the location parameter and a linear trend in the scale parameter for Limpopo, while in Mpumalanga the non-stationary GEVD model, which has a nonlinear quadratic trend in the scale parameter and no variation in the location parameter fitted well to the maximum monthly rainfall data. Results from the non-stationary GPD models showed that inclusion of the time covariate in our models was not significant for Eastern Cape, hence the bestfit model was the stationary GPD model. Furthermore, the non-stationary GPD model with a linear trend in the scale parameter provided the best-fit for KwaZulu-Natal and Mpumalanga, while in Gauteng and Limpopo the nonstationary GPD model with a nonlinear quadratic trend in the scale parameter fitted well to the monthly rainfall data. Lastly, GPD with time-varying thresholds was applied to model monthly rainfall excesses, where a penalised regression cubic smoothing spline was used as a time-varying threshold and the GPD model was fitted to cluster maxima. The estimate of the shape parameter showed that the Weibull family of distributions is appropriate in modelling the upper tail of the distribution for Limpopo and Mpumalanga, while for Eastern Cape, Gauteng and KwaZulu-Natal, the exponential family of distributions was found to be appropriate in modelling the upper tail of the distribution. The dissertation contributes positively to the body of knowledge in extreme value theory application to rainfall data and makes recommendations to the government agencies on the long-term rainfall variability and their negative impact on the economy.
Mashishi, Daniel. « Modeling average monthly rainfall for South Africa using extreme value theory ». Thesis, 2020. http://hdl.handle.net/10386/3399.
Texte intégralThe main purpose of modelling rare events such as heavy rainfall, heat waves, wind speed, interest rate and many other rare events is to try and mitigate the risk that might arise from these events. Heavy rainfall and floods are still troubling many countries. Almost every incident of heavy rainfall or floods might result in loss of lives, damages to infrastructure and roads, and also financial losses. In this dissertation, the interest was in modelling average monthly rainfall for South Africa using extreme value theory (EVT). EVT is made up mainly of two approaches: the block maxima and peaks-over thresh old (POT). This leads to the generalised extreme value and the generalised Pareto distributions, respectively. The unknown parameters of these distri butions were estimated using the method of maximum likelihood estimators in this dissertation. According to goodness-of-fit test, the distribution in the Weibull domain of attraction, Gumbel domain and generalised Pareto distri butions were appropriate distributions to model the average monthly rainfall for South Africa. When modelling using the POT approach, the point process model suggested that some areas within South Africa might experience high rainfall in the coming years, whereas the GPD model suggested otherwise. The block maxima approach using the GEVD and GEVD for r-largest order statistics also revealed similar findings to that of the GPD. The study recommend that for future research on average monthly rainfall for South Africa the findings might be improved if we can invite the Bayesian approach and multivariate extremes. Furthermore, on the POT approach, time-varying covariates and thresholds are also recommended.
National Research Foundation (NRF) and South African Weather Service (SAWS)
Chapitres de livres sur le sujet "Rainfall Intensity Modeling"
Hashino, Michio. « Stochastic Formulation of Storm Pattern and Rainfall Intensity-Duration Curve for Design Flood ». Dans Hydrologic Frequency Modeling, 303–14. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_21.
Texte intégralBandara, H. A. A. I. S., et Ryo Onishi. « High Resolution Numerical Weather Simulation for Orographic Precipitation as an Accurate Early Warning Tool for Landslide Vulnerable Terrains ». Dans Progress in Landslide Research and Technology, 239–46. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44296-4_11.
Texte intégralErzagian, Egy, Wahyu Wilopo et Teuku Faisal Fathani. « Landslide Susceptibility Zonation Using GIS-Based Frequency Ratio Approach in the Kulon Progo Mountains Area, Indonesia ». Dans Progress in Landslide Research and Technology, 115–26. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44296-4_3.
Texte intégralOsorio, Andrés F., Rubén Montoya, Franklin F. Ayala et Juan D. Osorio-Cano. « Reconstructing the Eta and Iota Events for San Andrés and Providencia : A Focus on Urban and Coastal Flooding ». Dans Disaster Risk Reduction, 39–67. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6663-5_3.
Texte intégralShiba, S., R. Ito et T. Sueishi. « Effect of Rainfall Intensity on Acid Rain Formation by Absorption of Sulfur Dioxide ». Dans Water Pollution : Modelling, Measuring and Prediction, 735–48. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3694-5_51.
Texte intégralKalsnes, Bjørn, et Vittoria Capobianco. « Use of Vegetation for Landslide Risk Mitigation ». Dans Springer Climate, 77–85. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86211-4_10.
Texte intégralKoutsoyiannis, Demetris, et Theano Iliopoulou. « Ombrian curves advanced to stochastic modeling of rainfall intensity ». Dans Rainfall, 261–84. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822544-8.00003-2.
Texte intégralLazzari, Maurizio, Marco Piccarreta, Ram L. Ray et Salvatore Manfreda. « Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence ». Dans Landslides - Investigation and Monitoring. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92730.
Texte intégralPanda, Sudhanshu S., Debasmita Misra, Devendra M. Amatya, Johnny M. Grace III et Anita Thompson. « Advances in modeling soil erosion risk ». Dans Burleigh Dodds Series in Agricultural Science, 127–49. Burleigh Dodds Science Publishing, 2024. http://dx.doi.org/10.19103/as.2023.0131.09.
Texte intégralDegefe Merga, Damtew. « Perspective chapter : Responses of the water balance components under land use/land cover and climate change using Geospatial and hydrologic modeling in the Dhidhessa Sub-Basin, Ethiopia ». Dans Global Warming - A Concerning Component of Climate Change [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1001907.
Texte intégralActes de conférences sur le sujet "Rainfall Intensity Modeling"
Thomas, M., T. G. Schmitt, U. Leinweber et H. Gysi. « Usage of Radar Measured Rainfall Intensity Distributions in Urban Runoff Modelling ». Dans Specialty Symposium on Urban Drainage Modeling at the World Water and Environmental Resources Congress 2001. Reston, VA : American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40583(275)37.
Texte intégralKonuk, I., U. O. Akpan et D. P. Brennan. « Random Field Modeling of Rainfall-Induced Soil Movement ». Dans 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27165.
Texte intégralHeshani, P. H. T. D., H. G. L. N. Gunawardhana et J. Sirisena. « Incorporating rainfall projections into hydrological modeling for enhanced design hydrograph estimation ». Dans Civil Engineering Research Symposium 2024, 51–52. Department of Civil Engineering, University of Moratuwa, 2024. http://dx.doi.org/10.31705/cers.2024.26.
Texte intégralHassanpour, Pezhman. « Model of a Fluid-Level System for the Design and Analysis of Detention Basins Considering Recent Weather Extreme Events and Historic Precipitation Data ». Dans ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-116564.
Texte intégralNiranjana, J. S., Feba Paul, Hridya D. Nambiar, Ashly Joy et Neethu Roy. « Flood Risk Assessment of Thiruvananthapuram City, Kerala ». Dans International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.21.
Texte intégralBEILICCI, Erika Beata Maria, et Robert BEILICCI. « Influence of Rainfall Characteristics on Runoff in a Small Watershed ». Dans Air and Water – Components of the Environment 2021 Conference Proceedings. Casa Cărţii de Ştiinţă, 2021. http://dx.doi.org/10.24193/awc2021_13.
Texte intégralMolikevych, Roman S. « CURRENT FLOODING CONDITIONS OF SETTLEMENTS IN THE KHERSON REGION (UKRAINE) ». Dans 22nd International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/3.2/s12.05.
Texte intégral« Improved rainfall frequency analysis through separation of storm intensity and storm arrival frequency ». Dans 25th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2023. http://dx.doi.org/10.36334/modsim.2023.oshea.
Texte intégralRazali, Irfan Haziq, Aizat Mohd Taib, Wan Hanna Melini Wan Mohtar, Norinah Abd Rahman et Siti Amirah Aziz. « Numerical modelling on the effect of rainfall intensity on slope stability ». Dans ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0133892.
Texte intégral« Changes in intensity-frequency-duration relationship of heavy rainfalls at a station in Melbourne ». Dans 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2013. http://dx.doi.org/10.36334/modsim.2013.l12.yilmaz.
Texte intégralRapports d'organisations sur le sujet "Rainfall Intensity Modeling"
Wagner, Anna, Christopher Hiemstra, Glen Liston, Katrina Bennett, Dan Cooley et Arthur Gelvin. Changes in climate and its effect on timing of snowmelt and intensity-duration-frequency curves. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41402.
Texte intégralMatus, Sean, et Daniel Gambill. Automation of gridded HEC-HMS model development using Python : initial condition testing and calibration applications. Engineer Research and Development Center (U.S.), novembre 2022. http://dx.doi.org/10.21079/11681/46126.
Texte intégral