Pour voir les autres types de publications sur ce sujet consultez le lien suivant : RalGPS2.

Articles de revues sur le sujet « RalGPS2 »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « RalGPS2 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Tan, Juan, Weimin Wang, Bin Song, Yingjian Song, and Zili Meng. "Integrative Analysis of Three Novel Competing Endogenous RNA Biomarkers with a Prognostic Value in Lung Adenocarcinoma." BioMed Research International 2020 (August 4, 2020): 1–12. http://dx.doi.org/10.1155/2020/2837906.

Texte intégral
Résumé :
Increasing evidence has shown competitive endogenous RNAs (ceRNAs) play key roles in numerous cancers. Nevertheless, the ceRNA network that can predict the prognosis of lung adenocarcinoma (LUAD) is still lacking. The aim of the present study was to identify the prognostic value of key ceRNAs in lung tumorigenesis. Differentially expressed (DE) RNAs were identified between LUAD and adjacent normal samples by limma package in R using The Cancer Genome Atlas database (TCGA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway function enrichment analysis was performed u
Styles APA, Harvard, Vancouver, ISO, etc.
2

D’Aloia, Alessia, Edoardo Arrigoni, Barbara Costa, et al. "RalGPS2 Interacts with Akt and PDK1 Promoting Tunneling Nanotubes Formation in Bladder Cancer and Kidney Cells Microenvironment." Cancers 13, no. 24 (2021): 6330. http://dx.doi.org/10.3390/cancers13246330.

Texte intégral
Résumé :
RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor for RalA GTPase that is involved in several cellular processes, including cytoskeletal organization. Previously, we demonstrated that RalGPS2 also plays a role in the formation of tunneling nanotubes (TNTs) in bladder cancer 5637 cells. In particular, TNTs are a novel mechanism of cell–cell communication in the tumor microenvironment, playing a central role in cancer progression and metastasis formation. However, the molecular mechanisms involved in TNTs formation still need to be fully elucidated. Here we demonstrate that mid and
Styles APA, Harvard, Vancouver, ISO, etc.
3

D’Aloia, A., G. Berruti, B. Costa, et al. "RalGPS2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells." Experimental Cell Research 362, no. 2 (2018): 349–61. http://dx.doi.org/10.1016/j.yexcr.2017.11.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ceriani, Michela, Cristina Scandiuzzi, Loredana Amigoni, Renata Tisi, Giovanna Berruti, and Enzo Martegani. "Functional analysis of RalGPS2, a murine guanine nucleotide exchange factor for RalA GTPase." Experimental Cell Research 313, no. 11 (2007): 2293–307. http://dx.doi.org/10.1016/j.yexcr.2007.03.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ceriani, Michela, Loredana Amigoni, Cristina Scandiuzzi, Giovanna Berruti, and Enzo Martegani. "The PH-PxxP domain of RalGPS2 promotes PC12 cells differentiation acting as a dominant negative for RalA GTPase activation." Neuroscience Research 66, no. 3 (2010): 290–98. http://dx.doi.org/10.1016/j.neures.2009.11.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

O. Santos, Adriana, Maria Carla Parrini, and Jacques Camonis. "RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases." PLOS ONE 11, no. 5 (2016): e0154840. http://dx.doi.org/10.1371/journal.pone.0154840.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Guo, Hongjun, Siqiao Wang, Aiqing Xie, et al. "Ral GEF with the PH Domain and SH3 Binding Motif 1 Regulated by Splicing Factor Junction Plakoglobin and Pyrimidine Metabolism Are Prognostic in Uterine Carcinosarcoma." Disease Markers 2021 (October 28, 2021): 1–17. http://dx.doi.org/10.1155/2021/1484227.

Texte intégral
Résumé :
Uterine carcinosarcoma (UCS) is a highly invasive malignant tumor that originated from the uterine epithelium. Many studies suggested that the abnormal changes of alternative splicing (AS) of pre-mRNA are related to the occurrence and metastasis of the tumor. This study investigates the mechanism of alternative splicing events (ASEs) in the tumorigenesis and metastasis of UCS. RNA-seq of UCS samples and alternative splicing event (ASE) data of UCS samples were downloaded from The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases, several times. Firstly, we performed the Cox regression ana
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kikuchi, A., S. D. Demo, Z. H. Ye, Y. W. Chen, and L. T. Williams. "ralGDS family members interact with the effector loop of ras p21." Molecular and Cellular Biology 14, no. 11 (1994): 7483–91. http://dx.doi.org/10.1128/mcb.14.11.7483-7491.1994.

Texte intégral
Résumé :
Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-inter
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kikuchi, A., S. D. Demo, Z. H. Ye, Y. W. Chen, and L. T. Williams. "ralGDS family members interact with the effector loop of ras p21." Molecular and Cellular Biology 14, no. 11 (1994): 7483–91. http://dx.doi.org/10.1128/mcb.14.11.7483.

Texte intégral
Résumé :
Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-inter
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rondaij, Mariska G., Ruben Bierings, Ellen L. van Agtmaal, et al. "Guanine exchange factor RalGDS mediates exocytosis of Weibel-Palade bodies from endothelial cells." Blood 112, no. 1 (2008): 56–63. http://dx.doi.org/10.1182/blood-2007-07-099309.

Texte intégral
Résumé :
Abstract The small GTP-binding protein Ral has been implicated in regulated exocytosis via its interaction with the mammalian exocyst complex. We have previously demonstrated that Ral is involved in exocytosis of Weibel-Palade bodies (WPBs). Little is known about intracellular signaling pathways that promote activation of Ral in response to ligand binding of G protein–coupled receptors. Here we show that RNAi-mediated knockdown of RalGDS, an exchange factor for Ral, results in inhibition of thrombin- and epinephrine-induced exocytosis of WPBs, while overexpression of RalGDS promotes exocytosis
Styles APA, Harvard, Vancouver, ISO, etc.
11

Hao, Yansheng, Richard Wong, and Larry A. Feig. "RalGDS Couples Growth Factor Signaling to Akt Activation." Molecular and Cellular Biology 28, no. 9 (2008): 2851–59. http://dx.doi.org/10.1128/mcb.01917-07.

Texte intégral
Résumé :
ABSTRACT The Akt kinase is a key regulator of cell proliferation and survival. It is activated in part by PDK1-induced phosphorylation. Here we show that RalGDS, a Ras effector protein that activates Ral GTPases, has a second function that promotes Akt phosphorylation by PDK1 by bringing these two kinases together. In support of this conclusion is our finding that suppression of RalGDS expression in cells inhibits both epidermal growth factor and insulin-induced phosphorylation of Akt. Moreover, while PDK1 complexes with N-GDS, Akt complexes with the central region of RalGDS through an interme
Styles APA, Harvard, Vancouver, ISO, etc.
12

Voorberg, Jan, Mariska G. Rondaij, Karina A. Gijzen, et al. "The Guanine Exchange Factor RalGDS Is Involved in Regulated Exocytosis of Weibel-Palade Bodies from Endothelial Cells." Blood 106, no. 11 (2005): 3688. http://dx.doi.org/10.1182/blood.v106.11.3688.3688.

Texte intégral
Résumé :
Abstract Endothelial cells contribute to vascular homeostasis and mediate pathophysiological responses to hypoxia-induced injury and inflammatory events. To ensure rapid responses to vascular perturbation endothelial cells contain intracellular storage pools for inflammatory mediators and pro-thrombotic compounds. One of the best characterized storage granules within endothelial cells are the Weibel-Palade bodies (WPB), rod-shaped organelles that contains P-selectin, Von Willebrand Factor (VWF), interleukin-8 (IL-8) and a number of other proteins with diverse biological activities. Agonist-ind
Styles APA, Harvard, Vancouver, ISO, etc.
13

Gao, P., S. Liu, R. Yoshida, et al. "Ral GTPase Activation by Downregulation of RalGAP Enhances Oral Squamous Cell Carcinoma Progression." Journal of Dental Research 98, no. 9 (2019): 1011–19. http://dx.doi.org/10.1177/0022034519860828.

Texte intégral
Résumé :
Ral small GTPases, consisting of RalA and RalB, are members of the Ras family. Their activity is upregulated by RalGEFs. Since several RalGEFs are downstream effectors of Ras, Ral is activated by the oncogenic mutant Ras. Ral is negatively regulated by RalGAP complexes that consist of a catalytic α1 or α2 subunit and its common partner β subunit and similarly regulate the activity of RalA as well as RalB in vitro. Ral plays an important role in the formation and progression of pancreatic and lung cancers. However, the involvement of Ral in oral squamous cell carcinoma (OSCC) is unclear. In thi
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ferro, Elisa, David Magrini, Paolo Guazzi, et al. "G-protein binding features and regulation of the RalGDS family member, RGL2." Biochemical Journal 415, no. 1 (2008): 145–54. http://dx.doi.org/10.1042/bj20080255.

Texte intégral
Résumé :
RGL2 [RalGDS (Ral guanine nucleotide dissociation stimulator)-like 2] is a member of the RalGDS family that we have previously isolated and characterized as a potential effector for Ras and the Ras analogue Rap1b. The protein shares 89% sequence identity with its mouse orthologue Rlf (RalGDS-like factor). In the present study we further characterized the G-protein-binding features of RGL2 and also demonstrated that RGL2 has guanine-nucleotide-exchange activity toward the small GTPase RalA. We found that RGL2/Rlf properties are well conserved between human and mouse species. Both RGL2 and Rlf h
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rodriguez-Viciana, Pablo, and Frank McCormick. "RalGDS comes of age." Cancer Cell 7, no. 3 (2005): 205–6. http://dx.doi.org/10.1016/j.ccr.2005.02.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Johnson, Sandra A. S., Nihar Mandavia, Horng-Dar Wang, and Deborah L. Johnson. "Transcriptional Regulation of the TATA-Binding Protein by Ras Cellular Signaling." Molecular and Cellular Biology 20, no. 14 (2000): 5000–5009. http://dx.doi.org/10.1128/mcb.20.14.5000-5009.2000.

Texte intégral
Résumé :
ABSTRACT Our previous studies have demonstrated that the level of the central transcription factor TATA-binding protein (TBP) is increased in cells expressing the hepatitis B virus (HBV) X protein through the activation of the Ras signaling pathway, which serves to enhance both RNA polymerase I and III promoter activities. To understand the mechanism by which TBP is regulated, we have investigated whether enhanced expression is modulated at the transcriptional level. Nuclear run-on assays revealed that the HBV X protein increases the number of active transcription complexes on the TBP gene. In
Styles APA, Harvard, Vancouver, ISO, etc.
17

Liao, Shenling, He He, Yuping Zeng, et al. "A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1." Open Medicine 16, no. 1 (2021): 773–85. http://dx.doi.org/10.1515/med-2021-0286.

Texte intégral
Résumé :
Abstract Objective To identify differentially expressed and clinically significant mRNAs and construct a potential prediction model for metabolic steatohepatitis (MASH). Method We downloaded four microarray datasets, GSE89632, GSE24807, GSE63067, and GSE48452, from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis were performed to screen significant genes. Finally, we constructed a nomogram of six hub genes in predicting MASH and assessed it through receiver operating characteristic (ROC) curve, calibratio
Styles APA, Harvard, Vancouver, ISO, etc.
18

Trojani, Alessandra, Antonino Greco, Alessandra Tedeschi, et al. "Microarray Identifies Different Molecular Signatures of Waldenstrom Macroglobulinemia (WM) Compared to IgM Monoclonal Gammopathy of Undetermined Significance (IgMMGUS)." Blood 120, no. 21 (2012): 3495. http://dx.doi.org/10.1182/blood.v120.21.3495.3495.

Texte intégral
Résumé :
Abstract Abstract 3495 WM is a rare malignant B-cell disorder characterized by lymphoplasmacytic infiltration of the bone marrow (BM) and hypersecretion of monoclonal IgM. IgMMGUS is an asymptomatic condition characterized by the presence of a serum monoclonal IgM protein and bone marrow infiltration < 10%. WM (symptomatic and indolent) and IgMMGUS can be identified based on two main features, the bone marrow infiltration and the existence of signs and symptoms. The biological and genetic characteristics of both conditions need to be explored. Our study aims to highlight the different expre
Styles APA, Harvard, Vancouver, ISO, etc.
19

Omholt, Katarina, and Johan Hansson. "No evidence of RALGDS mutations in cutaneous melanoma." Melanoma Research 17, no. 6 (2007): 410–12. http://dx.doi.org/10.1097/cmr.0b013e3282ef4178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Cassani, Barbara. "RalGAPα2 and NLRP3 Orchestrate Tumor Invasion in Colitis-Associated Cancers". Cellular and Molecular Gastroenterology and Hepatology 9, № 2 (2020): 339–40. http://dx.doi.org/10.1016/j.jcmgh.2019.11.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Miller, Marsha J., Sally Prigent, Erik Kupperman, et al. "RalGDS Functions in Ras- and cAMP-mediated Growth Stimulation." Journal of Biological Chemistry 272, no. 9 (1997): 5600–5605. http://dx.doi.org/10.1074/jbc.272.9.5600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

M’Rabet, Laura, Paul Coffer, Fried Zwartkruis, et al. "Activation of the Small GTPase Rap1 in Human Neutrophils." Blood 92, no. 6 (1998): 2133–40. http://dx.doi.org/10.1182/blood.v92.6.2133.

Texte intégral
Résumé :
Abstract The small GTPase Rap1 is highly expressed in human neutrophils, but its function is largely unknown. Using the Rap1-binding domain of RalGDS (RalGDS-RBD) as an activation-specific probe for Rap1, we have investigated the regulation of Rap1 activity in primary human neutrophils. We found that a variety of stimuli involved in neutrophil activation, including fMet-Leu-Phe (fMLP), platelet-activating factor (PAF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IgG-coated particles, induce a rapid and transient Rap1 activation. In addition, we found that Rap1 is normally ac
Styles APA, Harvard, Vancouver, ISO, etc.
23

M’Rabet, Laura, Paul Coffer, Fried Zwartkruis, et al. "Activation of the Small GTPase Rap1 in Human Neutrophils." Blood 92, no. 6 (1998): 2133–40. http://dx.doi.org/10.1182/blood.v92.6.2133.418k19_2133_2140.

Texte intégral
Résumé :
The small GTPase Rap1 is highly expressed in human neutrophils, but its function is largely unknown. Using the Rap1-binding domain of RalGDS (RalGDS-RBD) as an activation-specific probe for Rap1, we have investigated the regulation of Rap1 activity in primary human neutrophils. We found that a variety of stimuli involved in neutrophil activation, including fMet-Leu-Phe (fMLP), platelet-activating factor (PAF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IgG-coated particles, induce a rapid and transient Rap1 activation. In addition, we found that Rap1 is normally activated i
Styles APA, Harvard, Vancouver, ISO, etc.
24

Vetter, I. R., T. Linnemann, S. Wohlgemuth, et al. "Structural and biochemical analysis of Ras-effector signaling via RalGDS." FEBS Letters 451, no. 2 (1999): 175–80. http://dx.doi.org/10.1016/s0014-5793(99)00555-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Huang, Lan, Xiangwei Weng, Franz Hofer, G. Steven Martin, and Sung-Hou Kirn. "Three-dimensional structure of the Ras-interacting domain of RalGDS." Natural Structural Biology 4, no. 8 (1997): 609–15. http://dx.doi.org/10.1038/nsb0897-609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

de Bruyn, Kim M. T., Johan de Rooij, Rob M. F. Wolthuis, et al. "RalGEF2, a Pleckstrin Homology Domain Containing Guanine Nucleotide Exchange Factor for Ral." Journal of Biological Chemistry 275, no. 38 (2000): 29761–66. http://dx.doi.org/10.1074/jbc.m001160200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Rifki, Oktay F., Brian O. Bodemann, Pavan K. Battiprolu, Michael A. White, and Joseph A. Hill. "RalGDS-dependent cardiomyocyte autophagy is required for load-induced ventricular hypertrophy." Journal of Molecular and Cellular Cardiology 59 (June 2013): 128–38. http://dx.doi.org/10.1016/j.yjmcc.2013.02.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Li, Yajuan, Ling Wang, Jinchun Zhou, et al. "Identification of novel autoantibodies in systemic autoimmunity using 10,000-antigen proteome arrays (P4006)." Journal of Immunology 190, no. 1_Supplement (2013): 42.4. http://dx.doi.org/10.4049/jimmunol.190.supp.42.4.

Texte intégral
Résumé :
Abstract Systemic erythematosus lupus (SLE) is an autoimmune disease characterized by presence of autoantibodies against a broad spectrum of self-antigens. In order to identify novel serum autoantibodies associated with SLE, we utilized a protoarray bearing 10,000 antigens to screen IgG and IgM autoAbs in sera of SLE patients. 446 IgG and 1218 IgM autoAbs were significantly increased in SLE compared with health controls (p<0.05), in which 367 autAbs overlapped in IgG and IgM. Except the autoAbs previously identified in SLE patients, such as anti-DNA, Ro, La, etc., the protoarray also un
Styles APA, Harvard, Vancouver, ISO, etc.
29

Peng, Wei, Jiwei Xu, Xiaotao Guan, et al. "Structural study of the Cdc25 domain from Ral-specific guanine-nucleotide exchange factor RalGPS1a." Protein & Cell 2, no. 4 (2011): 308–19. http://dx.doi.org/10.1007/s13238-011-1036-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Matsubara, Kenji, Shosei Kishida, Yoshiharu Matsuura, Hitoshi Kitayama, Makoto Noda, and Akira Kikuchi. "Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation." Oncogene 18, no. 6 (1999): 1303–12. http://dx.doi.org/10.1038/sj.onc.1202425.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sood, Raman, Izabela Makalowska, John D. Carpten, et al. "The human RGL (RalGDS-like) gene: cloning, expression analysis and genomic organization." Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1491, no. 1-3 (2000): 285–88. http://dx.doi.org/10.1016/s0167-4781(00)00031-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

González-García, Ana, Catrin A. Pritchard, Hugh F. Paterson, Georgia Mavria, Gordon Stamp, and Christopher J. Marshall. "RalGDS is required for tumor formation in a model of skin carcinogenesis." Cancer Cell 7, no. 3 (2005): 219–26. http://dx.doi.org/10.1016/j.ccr.2005.01.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ferro, Elisa, and Lorenza Trabalzini. "RalGDS family members couple Ras to Ral signalling and that's not all." Cellular Signalling 22, no. 12 (2010): 1804–10. http://dx.doi.org/10.1016/j.cellsig.2010.05.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

O'gara, Mary Jeanne, Xian-feng Zhang, Leroy Baker, and Mark S. Marshall. "Characterization of the Ras Binding Domain of the RalGDS-Related Protein, RLF." Biochemical and Biophysical Research Communications 238, no. 2 (1997): 425–29. http://dx.doi.org/10.1006/bbrc.1997.7299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Li, Quanzhen, Jinchun Zhou, Tianfu Wu, and Chandra Mohan. "Protoarray analysis reveals novel autoantigens targeted by autoantibodies associated with DNA-repair pathway in systemic erythematosus lupus (HUM2P.330)." Journal of Immunology 192, no. 1_Supplement (2014): 53.3. http://dx.doi.org/10.4049/jimmunol.192.supp.53.3.

Texte intégral
Résumé :
Abstract Systemic erythematosus lupus (SLE) is an autoimmune disease characterized by presence of autoantibodies (autoAbs) against a broad spectrum of self-antigens. In order to identify novel autoAbs associated with SLE, we utilized a Protoarray bearing 9,500 antigens to screen IgG and IgM autoAbs in sera of SLE patients. 446 IgG and 1218 IgM autoAbs were identified to be significantly elevated in SLE patients compared with healthy controls (p<0.05). Protoarray revealed not only the previously described autoAbs such as antibodies against dsDNA, SSA/SSB, Histone and Sm/RNP, but also unc
Styles APA, Harvard, Vancouver, ISO, etc.
36

Missero, Caterina, Maria Teresa Pirro, and Roberto Di Lauro. "Multiple Ras Downstream Pathways Mediate Functional Repression of the Homeobox Gene Product TTF-1." Molecular and Cellular Biology 20, no. 8 (2000): 2783–93. http://dx.doi.org/10.1128/mcb.20.8.2783-2793.2000.

Texte intégral
Résumé :
ABSTRACT Expression of oncogenic Ras in thyroid cells results in loss of expression of several thyroid-specific genes and inactivation of TTF-1, a homeodomain-containing transcription factor required for normal development of the thyroid gland. In an effort to understand how signal transduction pathways downstream of Ras may be involved in suppression of the differentiated phenotype, we have tested mutants of the Ras effector region for their ability to affect TTF-1 transcriptional activity in a transient-transfection assay. We find that V12S35 Ras, a mutant known to interact specifically with
Styles APA, Harvard, Vancouver, ISO, etc.
37

Mazhab-Jafari, Mohammad T., Christopher B. Marshall, Matthew J. Smith, et al. "Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site." Proceedings of the National Academy of Sciences 112, no. 21 (2015): 6625–30. http://dx.doi.org/10.1073/pnas.1419895112.

Texte intégral
Résumé :
K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS assoc
Styles APA, Harvard, Vancouver, ISO, etc.
38

Linnemann, Thomas, Christina Kiel, Peter Herter, and Christian Herrmann. "The Activation of RalGDS Can Be Achieved Independently of Its Ras Binding Domain." Journal of Biological Chemistry 277, no. 10 (2001): 7831–37. http://dx.doi.org/10.1074/jbc.m110800200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wong, Richard, and Larry A. Feig. "Tyrosine phosphorylation of RalGDS by c-Met receptor blocks its interaction with Ras." Biochemical and Biophysical Research Communications 480, no. 3 (2016): 468–73. http://dx.doi.org/10.1016/j.bbrc.2016.10.074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

HUMPHREY, D., J. KWIATKOWSKA, E. P. HENSKE, et al. "Cloning and evaluation of RALGDS as a candidate for the tuberous sclerosis gene TSC1." Annals of Human Genetics 61, no. 4 (1997): 299–305. http://dx.doi.org/10.1046/j.1469-1809.1997.6140299.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

HUMPHREY, D., J. KWIATKOWSKA, E. P. HENSKE, et al. "Cloning and evaluation of RALGDS as a candidate for the tuberous sclerosis gene TSC1." Annals of Human Genetics 61, no. 4 (1997): 299–305. http://dx.doi.org/10.1017/s0003480097006246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Murphy, Gretchen A., Suzanne M. Graham, Staeci Morita, et al. "Involvement of Phosphatidylinositol 3-Kinase, but Not RalGDS, in TC21/R-Ras2-mediated Transformation." Journal of Biological Chemistry 277, no. 12 (2002): 9966–75. http://dx.doi.org/10.1074/jbc.m109059200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Liu, Shan, Congyu Shi, Xiaoyi Wang, Xiangrui Ma, and Pan Gao. "Low expression of RalGAPs associates with the poorer overall survival of head and neck squamous cell carcinoma." Translational Cancer Research 10, no. 12 (2021): 5085–94. http://dx.doi.org/10.21037/tcr-21-1489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kikuchi, Akira, and Lewis T. Williams. "Regulation of Interaction ofrasp21 with RalGDS and Raf-1 by Cyclic AMP-dependent Protein Kinase." Journal of Biological Chemistry 271, no. 1 (1996): 588–94. http://dx.doi.org/10.1074/jbc.271.1.588.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Isomura, M., K. Okui, T. Fujiwara, S. Shin, and Y. Nakamura. "Isolation and mapping of RAB2L, a human cDNA that encodes a protein homologous to RalGDS." Cytogenetic and Genome Research 74, no. 4 (1996): 263–65. http://dx.doi.org/10.1159/000134431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Peterson, Scott N., Lorenza Trabalzini, Teresa R. Brtva, et al. "Identification of a Novel RalGDS-related Protein as a Candidate Effector for Ras and Rap1." Journal of Biological Chemistry 271, no. 47 (1996): 29903–8. http://dx.doi.org/10.1074/jbc.271.47.29903.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Inoue, Kyoko, Till Maurer, Hiroaki Yamada, et al. "High-pressure NMR study of the complex of a GTPase Rap1A with its effector RalGDS." FEBS Letters 506, no. 3 (2001): 180–84. http://dx.doi.org/10.1016/s0014-5793(01)02809-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Senga, Takeshi, Takashi Iwamoto, Toshio Kitamura, Yozo Miyake, and Michinari Hamaguchi. "JAK/STAT3-dependent Activation of the RalGDS/Ral Pathway in M1 Mouse Myeloid Leukemia Cells." Journal of Biological Chemistry 276, no. 35 (2001): 32678–81. http://dx.doi.org/10.1074/jbc.m105749200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Yoshizawa, Ryo, Nobuhisa Umeki, Masataka Yanagawa, Masayuki Murata, and Yasushi Sako. "Single-molecule fluorescence imaging of RalGDS on cell surfaces during signal transduction from Ras to Ral." Biophysics and Physicobiology 14 (2017): 75–84. http://dx.doi.org/10.2142/biophysico.14.0_75.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Masuhara, Kaori, Seigo Iwata, Nobuhisa Umeki, and Shinsaku Maruta. "Photo-Regulation of the Interaction between Ras and Ralgds using GTP Analogues Composed of Photochromic Molecules." Biophysical Journal 108, no. 2 (2015): 614a. http://dx.doi.org/10.1016/j.bpj.2014.11.3340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!