Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Raman resonance.

Articles de revues sur le sujet « Raman resonance »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Raman resonance ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kitagawa, Teizo. "Resonance Raman spectroscopy." Journal of Porphyrins and Phthalocyanines 06, no. 04 (2002): 301–2. http://dx.doi.org/10.1142/s1088424602000361.

Texte intégral
Résumé :
The main topics in resonance Raman spectroscopy presented at ICPP-2 in Kyoto are briefly discussed. These include: (i) coherent spectroscopy and low frequency vibrations of ligand-photodissociated heme proteins, (ii) vibrational relaxation revealed by time-resolved anti-Stokes Raman spectroscopy, (iii) electron transfer in porphyrin arrays, (iv) vibrational assignments of tetraazaporphyrins and (v) resonance Raman spectra of an NO storing protein, nitrophorin.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yannoni, C. S., R. D. Kendrick, and P. K. Wang. "Raman magnetic resonance." Physical Review Letters 58, no. 4 (1987): 345–48. http://dx.doi.org/10.1103/physrevlett.58.345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Robert, Bruno. "Resonance Raman spectroscopy." Photosynthesis Research 101, no. 2-3 (2009): 147–55. http://dx.doi.org/10.1007/s11120-009-9440-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Raser, Lydia N., Stephen V. Kolaczkowski, and Therese M. Cotton. "RESONANCE RAMAN AND SURFACE-ENHANCED RESONANCE RAMAN SPECTROSCOPY OF HYPERICIN." Photochemistry and Photobiology 56, no. 2 (1992): 157–62. http://dx.doi.org/10.1111/j.1751-1097.1992.tb02142.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Frey, Gitti L., Reshef Tenne, Manyalibo J. Matthews, M. S. Dresselhaus, and G. Dresselhaus. "Raman and resonance Raman investigation ofMoS2nanoparticles." Physical Review B 60, no. 4 (1999): 2883–92. http://dx.doi.org/10.1103/physrevb.60.2883.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carey, Paul R. "Resonance Raman labels and Raman labels." Journal of Raman Spectroscopy 29, no. 10-11 (1998): 861–68. http://dx.doi.org/10.1002/(sici)1097-4555(199810/11)29:10/11<861::aid-jrs323>3.0.co;2-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wright, John C., Peter C. Chen, James P. Hamilton, Arne Zilian, and Mitchell J. Labuda. "Theoretical Foundations for a New Family of Infrared Four-Wave Mixing Spectroscopies." Applied Spectroscopy 51, no. 7 (1997): 949–58. http://dx.doi.org/10.1366/0003702971941601.

Texte intégral
Résumé :
A new family of selective four-wave mixing methods, based on the establishment of vibrational nonlinear polarizations with multiple resonances, is proposed. This family includes double-infrared resonances, vibrationally enhanced Raman resonance, and vibrationally enhanced two-photon resonance. These methods are related to traditional Raman and infrared spectroscopy, but the methods are shown to have the capabilities for component and conformer selectivity, line-narrowing of inhomogeneously broadened vibrational transitions, and mode selection. The theoretical foundations for the methods are de
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nikolenko, Andrii, Viktor Strelchuk, Bogdan Tsykaniuk, Dmytro Kysylychyn, Giulia Capuzzo, and Alberta Bonanni. "Resonance Raman Spectroscopy of Mn-Mgk Cation Complexes in GaN." Crystals 9, no. 5 (2019): 235. http://dx.doi.org/10.3390/cryst9050235.

Texte intégral
Résumé :
Resonance Raman analysis is performed in order to gain insight into the nature of impurity-induced Raman features in GaN:(Mn,Mg) hosting Mn-Mgk cation complexes and representing a prospective strategic material for the realization of full-nitride photonic devices emitting in the infra-red. It is found that in contrast to the case of GaN:Mn, the resonance enhancement of Mn-induced modes at sub-band excitation in Mg co-doped samples is not observed at an excitation of 2.4 eV, but shifts to lower energies, an effect explained by a resonance process involving photoionization of a hole from the don
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jian, Ye, and VanDorpe Pol. "Nanocrosses with Highly Tunable Double Resonances for Near-Infrared Surface-Enhanced Raman Scattering." International Journal of Optics 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/745982.

Texte intégral
Résumé :
We present asymmetric gold nanocrosses with highly tunable double resonances for the near-infrared (NIR) surface-enhanced Raman scattering (SERS), optimizing electric field enhancement at both the excitation and Stokes Raman wavelengths. The calculated largest SERS enhancement factor can reach a value as large as1.0×1010. We have found that the peak separation, the resonance position, and peak intensity ratio of the double-resonance gold nanocrosses can be tuned by changing the structural dimensions or the light polarization.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Roubi, Larbi, and Cosmo Carlone. "Resonance Raman spectrum ofHfS2andZrS2." Physical Review B 37, no. 12 (1988): 6808–12. http://dx.doi.org/10.1103/physrevb.37.6808.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Spiro, Thomas G. "Resonance Raman Results: Retraction." Science 278, no. 5335 (1997): 17.9–20. http://dx.doi.org/10.1126/science.278.5335.17-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Spiro, T. G. "Resonance Raman Results: Retraction." Science 278, no. 5335 (1997): 17h—20. http://dx.doi.org/10.1126/science.278.5335.17h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wolverson, D., and S. V. Railson. "Automated resonance Raman spectroscopy." Measurement Science and Technology 4, no. 10 (1993): 1080–84. http://dx.doi.org/10.1088/0957-0233/4/10/009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Vickers, Thomas J., Charles K. Mann, Jianxiong Zhu, and Chan Kong Chong. "Quantitative Resonance Raman Spectroscopy." Applied Spectroscopy Reviews 26, no. 4 (1991): 341–75. http://dx.doi.org/10.1080/05704929108050884.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Moldovan, Rebeca, Valentin Toma, Bogdan-Cezar Iacob, Rareș Ionuț Știufiuc, and Ede Bodoki. "Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications." Sensors 22, no. 1 (2021): 236. http://dx.doi.org/10.3390/s22010236.

Texte intégral
Résumé :
Extensive effort and research are currently channeled towards the implementation of SERS (Surface Enhanced Raman Spectroscopy) as a standard analytical tool as it has undisputedly demonstrated a great potential for trace detection of various analytes. Novel and improved substrates are continuously reported in this regard. It is generally believed that plasmonic nanostructures with plasmon resonances close to the excitation wavelength (on-resonance) generate stronger SERS enhancements, but this finding is still under debate. In the current paper, we compared off-resonance gold nanobones (GNBs)
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhu, Weile, Huiyang Wang, Yuheng Wang, Shengde Liu, Jianglei Di, and Liyun Zhong. "Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance." Nanomaterials 14, no. 24 (2024): 2036. https://doi.org/10.3390/nano14242036.

Texte intégral
Résumé :
The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment. This necessitates that SERS meets the requirements of refractive index insensitivit
Styles APA, Harvard, Vancouver, ISO, etc.
17

Burns, Gary R., Joanne R. Rollo, and Robin J. H. Clark. "Raman and resonance Raman studies of tetraphosphorus triselenide." Inorganic Chemistry 25, no. 8 (1986): 1145–49. http://dx.doi.org/10.1021/ic00228a017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bell, Stephen, Joe A. Crayston, Trevor J. Dines, and Saira B. Ellahi. "Resonance Raman, Surface-Enhanced Resonance Raman, Infrared, andab InitioVibrational Spectroscopic Study of Tetraazaannulenes." Journal of Physical Chemistry 100, no. 13 (1996): 5252–60. http://dx.doi.org/10.1021/jp9530459.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Merlin, Jean Claude, Emrys W. Thomas, and Guislaine Petit. "Resonance Raman study of phenylhydrazonopropanedinitriles." Canadian Journal of Chemistry 63, no. 7 (1985): 1840–44. http://dx.doi.org/10.1139/v85-305.

Texte intégral
Résumé :
Resonance Raman spectra and band assignments of some phenylhydrazonopropanedinitriles, including the 3-chloro and the 2-carboxy derivatives, in the 900–2300 cm−1 spectral range are presented and discussed. I5N and 2H isotopic shifts have been used to clarify the assignments, which have been made for both protonated and deprotonated forms of the compounds. The resonance Raman spectra of the protonated forms show strong coupling between NH deformation and hydrazone vibrations. This coupling is lost in the anionic forms, which are considered to have considerable carbanion character. By using the
Styles APA, Harvard, Vancouver, ISO, etc.
20

Laskowska, Magdalena, Łukasz Laskowski, and Kazimierz Dzilinski. "Mesoporous Silica Functionalized by Nickel-Cyclam Molecules: Preparation and Resonance Raman Study." Current Topics in Biophysics 35, no. 1 (2012): 11–18. http://dx.doi.org/10.2478/v10214-012-0002-0.

Texte intégral
Résumé :
Abstract Mesoporous silica SBA-15 functionalized by (1,4,8,11-tetraazacyclotetradecane) cyclam groups containing nickel ions (Ni-cyclam) was synthesized by two different approaches, and investigated by resonance Raman spectroscopy. Vibrational features of organometallic moleculess are analyzed for (Ni-cyclam) groups grafted in the silica pores. An assignment of bands in resonance Raman spectra was done to monitor the structure and properties of the mesoporous silica material with regard to the methods of synthesis used in this study. It was shown, that Raman scattering can be useful for probin
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bae, Chang Hyun, Si Won Song, Soo Yeong Lim, et al. "Multicolor-Raman analysis of Korean paintworks: emission-like Raman collection efficiency." Analyst 146, no. 7 (2021): 2374–82. http://dx.doi.org/10.1039/d0an02363a.

Texte intégral
Résumé :
It has been reported that the scattering cross-sections of resonance Raman spectra strongly depend on the resonance between the laser's excitation energy and the electronic absorption band of pigments in solution.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Curran, S. A., J. A. Talla, D. Zhang, and D. L. Carroll. "Defect-induced vibrational response of multi-walled carbon nanotubes using resonance Raman spectroscopy." Journal of Materials Research 20, no. 12 (2005): 3368–73. http://dx.doi.org/10.1557/jmr.2005.0414.

Texte intégral
Résumé :
We systematically introduced defects onto the body of multi-walled carbon nanotubes through an acid treatment, and the evolution of these defects was examined by Raman spectroscopy using different excitation wavelengths. The D and D′ modes are most prominent and responsive to defect formation caused by acid treatment and exhibit dispersive behavior upon changing the excitation wavelengths as expected from the double resonance Raman (DRR) mechanism. Several weaker Raman resonances including D″ and L1 (L2) + D′ modes were also observed at the lower excitation wavelengths (633 and 785 nm). In add
Styles APA, Harvard, Vancouver, ISO, etc.
23

JACULBIA, Rafael B., Hiroshi IMADA, Norihiko HAYAZAWA, and Yousoo KIM. "Single-Molecule Resonance Raman Spectroscopy." Vacuum and Surface Science 64, no. 1 (2021): 34–39. http://dx.doi.org/10.1380/vss.64.34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kumauchi, M., J. Sasaki, F. Tokunaga, M. Unno, and S. Yamauchi. "Resonance Raman spectra of PYP." Seibutsu Butsuri 39, supplement (1999): S70. http://dx.doi.org/10.2142/biophys.39.s70_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Verma, A. L., G. S. S. Saini, and N. K. Chaudhury. "Resonance Raman studies of metalloporphyrins." Proceedings / Indian Academy of Sciences 102, no. 3 (1990): 291–306. http://dx.doi.org/10.1007/bf02841943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Babcock, G. T. "Resonance Raman microspectroscopy in biology." Biophysical Journal 67, no. 1 (1994): 5–6. http://dx.doi.org/10.1016/s0006-3495(94)80449-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

McKee, Kristopher J., Matthew W. Meyer, and Emily A. Smith. "Plasmon Waveguide Resonance Raman Spectroscopy." Analytical Chemistry 84, no. 21 (2012): 9049–55. http://dx.doi.org/10.1021/ac3013972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Manthey, J. A., N. J. Boldt, D. F. Bocian, and S. I. Chan. "Resonance Raman studies of lactoperoxidase." Journal of Biological Chemistry 261, no. 15 (1986): 6734–41. http://dx.doi.org/10.1016/s0021-9258(19)62678-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Matus, M., S. Balgavy, H. Kuzmany, and W. Krätschmer. "Resonance Raman spectroscopy of Buckminsterfullerene." Physica C: Superconductivity 185-189 (December 1991): 423–24. http://dx.doi.org/10.1016/0921-4534(91)92014-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Majoube, M., Ph Millié, L. Chinsky, P. Y. Turpin, and G. Vergoten. "Resonance Raman spectra for purine." Journal of Molecular Structure 355, no. 2 (1995): 147–58. http://dx.doi.org/10.1016/0022-2860(95)08896-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

JACULBIA, Rafael B., Hiroshi IMADA, Norihiko HAYAZAWA, and Yousoo KIM. "Single-Molecule Resonance Raman Spectroscopy." Vacuum and Surface Science 64, no. 1 (2021): 34–39. http://dx.doi.org/10.1380/vss.64.34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Tejedor, C., J. M. Calleja, F. Meseguer, E. E. Mendez, C. A. Chang, and L. Esaki. "Raman resonance onE1edges in superlattices." Physical Review B 32, no. 8 (1985): 5303–11. http://dx.doi.org/10.1103/physrevb.32.5303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Giner, C. Trallero, and O. Sotolongo Costa. "One-Phonon Resonance Raman Scattering." physica status solidi (b) 127, no. 1 (1985): 121–30. http://dx.doi.org/10.1002/pssb.2221270111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Efremov, Evtim V., Freek Ariese, and Cees Gooijer. "Achievements in resonance Raman spectroscopy." Analytica Chimica Acta 606, no. 2 (2008): 119–34. http://dx.doi.org/10.1016/j.aca.2007.11.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Clarke, Richard H., and Sookhee Ha. "Resonance Raman spectroscopy of proflavin." Spectrochimica Acta Part A: Molecular Spectroscopy 41, no. 12 (1985): 1381–86. http://dx.doi.org/10.1016/0584-8539(85)80190-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

KOYAMA, Y. "ChemInform Abstract: Resonance Raman Spectroscopy." ChemInform 26, no. 32 (2010): no. http://dx.doi.org/10.1002/chin.199532316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Myers, Anne B. "‘Time-Dependent’ Resonance Raman Theory." Journal of Raman Spectroscopy 28, no. 6 (1997): 389–401. http://dx.doi.org/10.1002/(sici)1097-4555(199706)28:6<389::aid-jrs128>3.0.co;2-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Johannessen, Christian, Peter C. White, and Salim Abdali. "Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity Analysis of Cytochromec." Journal of Physical Chemistry A 111, no. 32 (2007): 7771–76. http://dx.doi.org/10.1021/jp0705267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Syrbu, N. N., A. V. Tiron, V. V. Zalamai, and N. P. Bejan. "Resonance Raman Scattering in TlGaSe2 Crystals." Advances in Condensed Matter Physics 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/5787821.

Texte intégral
Résumé :
The resonance Raman scattering for geometries Y(YX)Z and Y(ZX)Z at temperature 10 K and infrared reflection spectra in E∥a and E∥b polarizations at 300 K were investigated. The number of Aa (Ba) and Au (Bu) symmetry vibrational modes observed experimentally and calculated theoretically agree better in this case than when TlGa2Se4 crystals belong to D2h symmetry group. The emission of resonance Raman scattering and excitonic levels luminescence spectra overlap. The lines in resonance Raman spectra were identified as a combination of optical phonons in Brillouin zone center.
Styles APA, Harvard, Vancouver, ISO, etc.
40

SCHWEITZER-STENNER, REINHARD. "Polarized resonance Raman dispersion spectroscopy on metalporphyrins." Journal of Porphyrins and Phthalocyanines 05, no. 03 (2001): 198–224. http://dx.doi.org/10.1002/jpp.307.

Texte intégral
Résumé :
Resonance Raman spectroscopy is an ideal tool to investigate the structural properties of chromophores embedded in complex (biological) environments. This holds particularly for metalporphyrins which serve as prosthetic group in various proteins. Resonance Raman dispersion spectroscopy involves the measurement of resonance excitation and depolarization ratios of a large number of Raman lines at various excitation energies covering the spectral region of the chromophore's optical absorption bands. Thus, one obtains resonance excitation profiles and the depolarization ratio dispersion of these b
Styles APA, Harvard, Vancouver, ISO, etc.
41

Liu, C. H., Y. Zhou, Y. Sun, et al. "Resonance Raman and Raman Spectroscopy for Breast Cancer Detection." Technology in Cancer Research & Treatment 12, no. 4 (2013): 371–82. http://dx.doi.org/10.7785/tcrt.2012.500325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Barron, L. D. "Magnetic Raman optical activity and Raman electron paramagnetic resonance." Pure and Applied Chemistry 57, no. 2 (1985): 215–23. http://dx.doi.org/10.1351/pac198557020215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bonang, Christopher C., and Stewart M. Cameron. "Resonance Raman and hyper-Raman scattering from monosubstituted benzenes." Chemical Physics Letters 187, no. 6 (1991): 619–22. http://dx.doi.org/10.1016/0009-2614(91)90446-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

LI, YUANZUO, XIUMING ZHAO, YONGQING LI, et al. "INTERMOLECULAR CHARGE TRANSFER ENHANCED RESONANCE RAMAN SCATTERING OF CHARGE TRANSFER COMPLEX." Journal of Theoretical and Computational Chemistry 11, no. 02 (2012): 273–82. http://dx.doi.org/10.1142/s0219633612500186.

Texte intégral
Résumé :
Intermolecular charge transfer (ICT) enhanced resonance Raman scattering of charge transfer complex is investigated experimentally and theoretically. The evidence for intermolecular charge transfer on resonance electronic transition is visualized with charge difference density. The resonant Raman spectra reveal that the intensity of Raman peaks are strongly enhanced on the order of 104, by comparing with the normal Raman scattering spectrum. ICT complexes can be used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules. These strong charge-tr
Styles APA, Harvard, Vancouver, ISO, etc.
45

Prakash, Om, and Siva Umapathy. "Raman spectroscopy study of CdS nanorods and strain induced by the adsorption of 4-mercaptobenzoic acid." Journal of Chemical Physics 158, no. 13 (2023): 134719. http://dx.doi.org/10.1063/5.0142702.

Texte intégral
Résumé :
In this study, near- and off-resonance Raman spectra of cadmium sulfide (CdS) quantum rods (NRs) and 4-mercaptobenzoic acid (4-MBA) adsorbed CdS NRs are reported. The envelopes of characteristic optical phonon modes in the near-resonance Raman spectrum of CdS NRs are deconvoluted by following the phonon confinement model. As compared with off-resonant Raman spectra, optical phonon modes scattering cross section is amplified significantly in near-resonance Raman spectra through the Fröhlich interaction. The Huang–Rhys factor defining the strength of the Fröhlich interaction is estimated (∼0.468
Styles APA, Harvard, Vancouver, ISO, etc.
46

Liu, Liu, Mingliang Jin, Yaocheng Shi, et al. "Optical integrated chips with micro and nanostructures for refractive index and SERS-based optical label-free sensing." Nanophotonics 4, no. 4 (2015): 419–36. http://dx.doi.org/10.1515/nanoph-2015-0015.

Texte intégral
Résumé :
Abstract:Label-free optical biosensing technologies have superior abilities of quantitative analysis, unmodified targets, and ultrasmall sample volume, compared to conventional fluorescence-label-based sensing techniques, in detecting various biomolecules. In this review article, we introduce our recent results in the field of evanescent-wavebased refractive index sensing and surface enhanced Raman scattering (SERS)-based sensing, both of which are promising platforms for label-free optical biosensors. First, silicon-on-insulator (SOI) nanowire waveguide and metallic surface plasmon resonance
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chadha, S., E. Ghiamati, R. Manoharan, and W. H. Nelson. "UV-Excited Raman and Resonance Raman Spectra of Synthetic Polymers." Applied Spectroscopy 46, no. 7 (1992): 1176–81. http://dx.doi.org/10.1366/0003702924124141.

Texte intégral
Résumé :
High-quality, UV-excited (218–242 nm), fluorescence-free conventional Raman spectra have been generated from UV-transparent polymers such as polytetra-fluoroethylene (Teflon®), polyethylene, polypropylene, and polyoxymethylene (Delrin®). Spectra can be generated with the use of low exciting power (&lt;1 mW), but even at low power, precautions have to be taken to prevent photo-oxidation and thermal degradation of samples. Polyvinylchloride polymers especially have been found to be prone to degradation. Weakly absorbing polymers such as nylon and polybutadiene show special promise for Raman anal
Styles APA, Harvard, Vancouver, ISO, etc.
48

Keszthelyi, T., M. M. L. Grage, R. Wilbrandt, C. Svendsen, and O. S. Mortensen. "The Radical Cation of Bithiophene: An Experimental and Theoretical Study." Laser Chemistry 19, no. 1-4 (1999): 393–96. http://dx.doi.org/10.1155/1999/46038.

Texte intégral
Résumé :
The electronic absorption spectrum of the bithiophene radical cation prepared by γ-irradiation in a glassy Freon matrix is presented, together with the Raman spectra excited at 550 and 425 nm, in resonance with the two absorption bands. The 425 nm excited Raman spectrum was also recorded in a room temperature acetonitrile solution, in this case the radical cation was generated via a photoinduced electron transfer reaction. The resonance Raman spectra were interpreted with the help of density functional theory calculations. The results indicate the existence of at least two rotamers of the bith
Styles APA, Harvard, Vancouver, ISO, etc.
49

Getty, J. D., S. G. Westre, D. Z. Bezabeh, G. A. Barrall, M. J. Burmeister, and P. B. Kelly. "Detection of Benzene and Trichloroethylene in Sooting Flames." Applied Spectroscopy 46, no. 4 (1992): 620–25. http://dx.doi.org/10.1366/0003702924124907.

Texte intégral
Résumé :
The utility of resonance Raman spectroscopy as an analytical method is studied for application to multicomponent sooting flames. Far-ultraviolet resonance Raman spectra of benzene and trichloroethylene in methane diffusion flames have been obtained. The feasibility of flame temperature determination has been demonstrated for the benzene/methane flame. Resonance enhancement provides the sensitivity and selectivity required to detect low concentrations of aromatics and chlorinated hydrocarbons, in contrast to conventional spontaneous Raman spectroscopy, which suffers from low sensitivity and int
Styles APA, Harvard, Vancouver, ISO, etc.
50

Eng, Lars H., Vicki Schlegel, DanLi Wang, Halina Y. Neujahr, Marian T. Stankovich, and Therese Cotton. "Resonance Raman Scattering and Surface-Enhanced Resonance Raman Scattering Studies of Oxido-Reduction of Cytochromec3." Langmuir 12, no. 12 (1996): 3055–59. http://dx.doi.org/10.1021/la950599u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!