Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Random polymers.

Articles de revues sur le sujet « Random polymers »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Random polymers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Hollander, F. "Random polymers." Statistica Neerlandica 50, no. 1 (1996): 136–45. http://dx.doi.org/10.1111/j.1467-9574.1996.tb01484.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

DURHUUS, BERGFINNUR, and THORDUR JONSSON. "A POLYMER GAS ON A RANDOM SURFACE." Modern Physics Letters A 13, no. 02 (1998): 153–57. http://dx.doi.org/10.1142/s021773239800019x.

Texte intégral
Résumé :
Using the observation that configurations of N polymers with hard core interactions on a closed random surface correspond to random surfaces with N boundary components, we calculate the free energy of a gas of polymers interacting with fully quantized two-dimensioanal gravity. We derive the equation of state for the polymer gas and find that all the virial coefficients beyond the second one vanish identically.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Buffet, E., and J. V. Pul�. "Polymers and random graphs." Journal of Statistical Physics 64, no. 1-2 (1991): 87–110. http://dx.doi.org/10.1007/bf01057869.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tobita, Hidetaka. "Random Degradation of Branched Polymers. 1. Star Polymers." Macromolecules 29, no. 8 (1996): 3000–3009. http://dx.doi.org/10.1021/ma950971c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hu, Liuyong, Wenqiang Qiao, Jinfeng Han, et al. "Naphthalene diimide–diketopyrrolopyrrole copolymers as non-fullerene acceptors for use in bulk-heterojunction all-polymer UV–NIR photodetectors." Polymer Chemistry 8, no. 3 (2017): 528–36. http://dx.doi.org/10.1039/c6py01828a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Stepanow, S. "Polymers in a random environment." Journal of Physics A: Mathematical and General 25, no. 23 (1992): 6187–92. http://dx.doi.org/10.1088/0305-4470/25/23/016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kantor, Y., and M. Kardar. "Polymers with Random Self-Interactions." Europhysics Letters (EPL) 14, no. 5 (1991): 421–26. http://dx.doi.org/10.1209/0295-5075/14/5/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

FRANZ, SILVIO, MARC MÉZARD, and GIORGIO PARISI. "ON THE MEAN FIELD THEORY OF RANDOM HETEROPOLYMERS." International Journal of Neural Systems 03, supp01 (1992): 195–200. http://dx.doi.org/10.1142/s0129065792000528.

Texte intégral
Résumé :
We discuss some of the problems appearing in the Mean Field Theory of Random Heteropolymers. We show how an hypothesis of replica symmetry maps this problem onto a directed polymer in a random potential, and explain how this hypothesis can be checked through numerical simulations on directed polymers. The approach of Shaknovitch and Gutin is also reviewed in light of these findings.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lin, Yan-Cheng, Kosuke Terayama, Keita Yoshida, et al. "Strain-insensitive naphthalene-diimide-based conjugated polymers through sequential regularity control." Materials Chemistry Frontiers 6, no. 7 (2022): 891–900. http://dx.doi.org/10.1039/d1qm01521d.

Texte intégral
Résumé :
Sequential regularity control on the n-type conjugated polymers was investigated in this work. The sequentially random polymer produced a near-amorphous structure and a strain-insensitive charge transport performance.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yang, Wen Jun, Guo Zhu Liu, Ji Min Wang, and Du Ling Xia. "Synthesis of Zero-Birefringence Polymers Based on Positive and Negative Birefringence Polymer." Key Engineering Materials 428-429 (January 2010): 111–16. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.111.

Texte intégral
Résumé :
Birefringence of a polymer is caused by polymer chain orientation during an injection-molding, extrusion processing or heat drawing. Birefringence of polymers degrades the performance of optical devices that require focusing by lenses or maintaining the polarization state of incident light. Optical polymers which exhibit no birefringence with any orientation of polymer chains are desirable to realize high performance optical devices that handle polarized light. In this study we demonstrate the random copolymerization method for synthesizing the zero-birefringence polymers in which positive and
Styles APA, Harvard, Vancouver, ISO, etc.
11

Li, Hongze, Yingwu Luo, and Xiang Gao. "Core–shell nano-latex blending method to prepare multi-shape memory polymers." Soft Matter 13, no. 31 (2017): 5324–31. http://dx.doi.org/10.1039/c7sm00899f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Pei, Yi Wen, Jadranka Travas-Sejdic, and David E. Williams. "Synthesis and Characterization of Polysulfobetaines and their Random Copolymers." Materials Science Forum 700 (September 2011): 219–22. http://dx.doi.org/10.4028/www.scientific.net/msf.700.219.

Texte intégral
Résumé :
[3-(Methacryloylamino) propyl) dimethyl (3-sulfopropyl) ammonium hydroxide] polymer, known as poly (MPDSAH), and the random copolymers based on methyl methacrylate (MMA), methacryloxyethyltrimethylammonium (METAC) and 3-sulfopropyl methacrylate potassium (SPMA) were synthesized via Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization technique. Solution properties of these (co) polymers in response to temperature and ionic strength have been studied using dynamic light scattering (DLS). For poly (MPDSAH), polymer size decreased from 500 nm to 10 nm (in diameter) when the poly
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hoffman, Allan S. "Bioconjugates of Intelligent Polymers and Recognition Proteins for Use in Diagnostics and Affinity Separations." Clinical Chemistry 46, no. 9 (2000): 1478–86. http://dx.doi.org/10.1093/clinchem/46.9.1478.

Texte intégral
Résumé :
Abstract Polymers that respond to small changes in environmental stimuli with large, sometimes discontinuous changes in their physical state or properties are often called “intelligent” or “smart” polymers. We have conjugated these polymers to different recognition proteins, including antibodies, protein A, streptavidin, and enzymes. These bioconjugates have been prepared by random polymer conjugation to lysine amino groups on the protein surface, and also by site-specific conjugation of the polymer to specific amino acid sites, such as cysteine sulfhydryl groups, that are genetically engineer
Styles APA, Harvard, Vancouver, ISO, etc.
14

Comets, Francis, Gregorio Moreno, and Alejandro F. Ramí rez. "Random polymers on the complete graph." Bernoulli 25, no. 1 (2019): 683–711. http://dx.doi.org/10.3150/17-bej1002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Gorokhov, D. A., and G. Blatter. "Marginal pinning of quenched random polymers." Physical Review B 62, no. 21 (2000): 14032–39. http://dx.doi.org/10.1103/physrevb.62.14032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Jögi, Per, and Didier Sornette. "Self-organized critical random directed polymers." Physical Review E 57, no. 6 (1998): 6936–43. http://dx.doi.org/10.1103/physreve.57.6936.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

AFONSO, M. MARTINS, and D. VINCENZI. "Nonlinear elastic polymers in random flow." Journal of Fluid Mechanics 540, no. -1 (2005): 99. http://dx.doi.org/10.1017/s0022112005005951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Staggs, J. E. J. "Modelling random scission of linear polymers." Polymer Degradation and Stability 76, no. 1 (2002): 37–44. http://dx.doi.org/10.1016/s0141-3910(01)00263-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Wolf, M., and K. Fesser. "Random interchain coupling of conjugated polymers." Synthetic Metals 43, no. 1-2 (1991): 3403. http://dx.doi.org/10.1016/0379-6779(91)91314-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Comets, Francis, and Nobuo Yoshida. "Brownian Directed Polymers in Random Environment." Communications in Mathematical Physics 254, no. 2 (2004): 257–87. http://dx.doi.org/10.1007/s00220-004-1203-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dua, Arti, and Thomas A. Vilgis. "Semiflexible polymers in a random environment." Journal of Chemical Physics 121, no. 11 (2004): 5505–13. http://dx.doi.org/10.1063/1.1783272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zygouras, N. "Strong disorder in semidirected random polymers." Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 49, no. 3 (2013): 753–80. http://dx.doi.org/10.1214/12-aihp483.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wolf, M., and K. Fesser. "Random interchain coupling of conjugated polymers." Journal of Physics: Condensed Matter 3, no. 29 (1991): 5489–98. http://dx.doi.org/10.1088/0953-8984/3/29/004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Klein, D. J., T. P. Zivković та N. Trinajstić. "Resonance in random π-network polymers". Journal of Mathematical Chemistry 1, № 3 (1987): 309–34. http://dx.doi.org/10.1007/bf01179796.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Derrida, B. "Directed polymers in a random medium." Physica A: Statistical Mechanics and its Applications 163, no. 1 (1990): 71–84. http://dx.doi.org/10.1016/0378-4371(90)90316-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Hossain, MA, Morium, M. Elias, et al. "Multi-phenyl structured aromatic hydrocarbon polymer." Bangladesh Journal of Scientific and Industrial Research 55, no. 2 (2020): 139–46. http://dx.doi.org/10.3329/bjsir.v55i2.47634.

Texte intégral
Résumé :
Multi-phenyl structured random polymer was synthesized via condensation polymerization reaction by applying different monomer ratios and characterized by various spectroscopic methods (FT-IR, 1H NMR). The prepared polymers showed good thermooxidative stability up to 400 ºC. The surface morphology was studied by FESEM that showed the good linkage among the polymer chains. The EDS data of poly(fluorenylene ether ketone), PFEK; demonstrated that all the monomers participated in the copolymerization reaction. Inherent viscosity values of the polymers were obtained in the range of 0.76∼1.12 dL g-1.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tashkinov, M. A., A. D. Dobrydneva, V. P. Matveenko, and V. V. Silberschmidt. "Modeling the Effective Conductive Properties of Polymer Nanocomposites with a Random Arrangement of Graphene Oxide Particles." PNRPU Mechanics Bulletin, no. 2 (December 15, 2021): 167–80. http://dx.doi.org/10.15593/perm.mech/2021.2.15.

Texte intégral
Résumé :
Сomposite materials are widely used in various industrial sectors, for example, in the aviation, marine and automotive industries, civil engineering and others. Methods based on measuring the electrical conductivity of a composite material have been actively developed to detect internal damage in polymer composite materials, such as matrix cracking, delamination, and other types of defects, which make it possible to monitor a composite’s state during its entire service life. Polymers are often used as matrices in composite materials. However, almost always pure polymers are dielectrics. The ad
Styles APA, Harvard, Vancouver, ISO, etc.
28

Raccosta, Samuele, Fabio Librizzi, Alistair M. Jagger, et al. "Scaling Concepts in Serpin Polymer Physics." Materials 14, no. 10 (2021): 2577. http://dx.doi.org/10.3390/ma14102577.

Texte intégral
Résumé :
α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zygouras, Nikolaos. "Semidirected random polymers: Strong disorder and localization." Actes des rencontres du CIRM 2, no. 1 (2010): 47–48. http://dx.doi.org/10.5802/acirm.25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jurjiu, A., R. Dockhorn, O. Mironova, and J. U. Sommer. "Two universality classes for random hyperbranched polymers." Soft Matter 10, no. 27 (2014): 4935. http://dx.doi.org/10.1039/c4sm00711e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kardar, Mehran, and Yi-Cheng Zhang. "Scaling of Directed Polymers in Random Media." Physical Review Letters 58, no. 20 (1987): 2087–90. http://dx.doi.org/10.1103/physrevlett.58.2087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sebastian, K. L., and K. Sumithra. "Adsorption of polymers on a random surface." Physical Review E 47, no. 1 (1993): R32—R35. http://dx.doi.org/10.1103/physreve.47.r32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Høye, Johan Skule, George Stell, and Chi-Lun Lee. "Ornstein−Zernike Random-Walk Approach for Polymers†." Journal of Physical Chemistry B 108, no. 51 (2004): 19809–17. http://dx.doi.org/10.1021/jp0404302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Sznitko, Lech, Jaroslaw Mysliwiec, and Andrzej Miniewicz. "The role of polymers in random lasing." Journal of Polymer Science Part B: Polymer Physics 53, no. 14 (2015): 951–74. http://dx.doi.org/10.1002/polb.23731.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhang, Zhi-Yong, Shi-Jie Xiong, and S. N. Evangelou. "Electronic transport in random-side-chain polymers." Journal of Physics: Condensed Matter 10, no. 36 (1998): 8049–57. http://dx.doi.org/10.1088/0953-8984/10/36/014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chakrabarti, Bikas K., Amit K. Chattopadhyay, and Amit Dutta. "Dynamics of linear polymers in random media." Physica A: Statistical Mechanics and its Applications 333 (February 2004): 34–40. http://dx.doi.org/10.1016/j.physa.2003.10.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Hansen, Alex, Einar L. Hinrichsen, and St�phane Roux. "Non-directed polymers in a random medium." Journal de Physique I 3, no. 7 (1993): 1569–84. http://dx.doi.org/10.1051/jp1:1993201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Semenov, A. N. "Dynamics of associating polymers with random structure." Europhysics Letters (EPL) 76, no. 6 (2006): 1116–22. http://dx.doi.org/10.1209/epl/i2006-10396-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Halpin-Healy, Timothy. "Directed polymers in random media: Probability distributions." Physical Review A 44, no. 6 (1991): R3415—R3418. http://dx.doi.org/10.1103/physreva.44.r3415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Berger, Quentin, and Niccolò Torri. "Directed polymers in heavy-tail random environment." Annals of Probability 47, no. 6 (2019): 4024–76. http://dx.doi.org/10.1214/19-aop1353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Trovato, A., J. van Mourik, and A. Maritan. "Swollen-collapsed transition in random hetero-polymers." European Physical Journal B 6, no. 1 (1998): 63–73. http://dx.doi.org/10.1007/s100510050527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Borodin, Alexei, Alexey Bufetov, and Ivan Corwin. "Directed random polymers via nested contour integrals." Annals of Physics 368 (May 2016): 191–247. http://dx.doi.org/10.1016/j.aop.2016.02.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Scott, Kenneth W. "Criteria for random degradation of linear polymers." Journal of Polymer Science: Polymer Symposia 46, no. 1 (2009): 321–34. http://dx.doi.org/10.1002/polc.5070460124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Romm, Freddy A., and Oleg L. Figovsky. "Statistical polymer method: Modeling of macromolecules and aggregates with branching and crosslinking, formed in random processes." Discrete Dynamics in Nature and Society 2, no. 3 (1998): 203–8. http://dx.doi.org/10.1155/s1026022698000181.

Texte intégral
Résumé :
The statistical polymer method is based on the consideration of averaged structures of all possible macromolecules of the same weight. One has derived equations allowing evaluation of all additive parameters of macromolecules and their systems. The statistical polymer method allows modeling of branched crosslinked macromolecules and their systems in equilibrium or non-equilibrium. The fractal consideration of statistical polymer allows modeling of all kinds of random fractal and other objects studied by fractal theory. The statistical polymer method is applicable not only to polymers but also
Styles APA, Harvard, Vancouver, ISO, etc.
45

Howard, Jenna B., and Barry C. Thompson. "Design of Random and Semi-Random Conjugated Polymers for Organic Solar Cells." Macromolecular Chemistry and Physics 218, no. 21 (2017): 1700255. http://dx.doi.org/10.1002/macp.201700255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Michieletto, Davide, Marco Baiesi, Enzo Orlandini, and Matthew S. Turner. "Rings in random environments: sensing disorder through topology." Soft Matter 11, no. 6 (2015): 1100–1106. http://dx.doi.org/10.1039/c4sm02324b.

Texte intégral
Résumé :
We study the mobility of ring and linear polymers driven through a random environment by an external field. Changes in the surrounding structure are captured by measuring the mobility of the rings, while linear polymers are insensitive. This encourages novel non-invasive ways of exploiting topology to sense microscopic disorder.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Meng, Xianghe. "Efficient Prediction of Polymer Glass Transition Temperatures through Machine Learning Methods." Advances in Engineering Technology Research 9, no. 1 (2024): 544. http://dx.doi.org/10.56028/aetr.9.1.544.2024.

Texte intégral
Résumé :
The glass transition temperature (Tg) plays a crucial role in defining polymer properties. Despite the widespread use of machine learning for material design and property prediction, there are still challenges concerning the interpretability and model performance when predicting Tg. In this study, Simplified Molecular Input Line Entry System strings are utilised to encode the polymer structure, which are then transformed into molecular descriptors for analytical training and prediction of Tg using Artificial Neural Network and Random Forest models. Meticulous hyperparameter tuning of the Rando
Styles APA, Harvard, Vancouver, ISO, etc.
48

Benito, Javier, Nikos Karayiannis, and Manuel Laso. "Confined Polymers as Self-Avoiding Random Walks on Restricted Lattices." Polymers 10, no. 12 (2018): 1394. http://dx.doi.org/10.3390/polym10121394.

Texte intégral
Résumé :
Polymers in highly confined geometries can display complex morphologies including ordered phases. A basic component of a theoretical analysis of their phase behavior in confined geometries is the knowledge of the number of possible single-chain conformations compatible with the geometrical restrictions and the established crystalline morphology. While the statistical properties of unrestricted self-avoiding random walks (SAWs) both on and off-lattice are very well known, the same is not true for SAWs in confined geometries. The purpose of this contribution is (a) to enumerate the number of SAW
Styles APA, Harvard, Vancouver, ISO, etc.
49

Le Doussal, Pierre. "Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields." Journal of Statistical Physics 69, no. 5-6 (1992): 917–54. http://dx.doi.org/10.1007/bf01058756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chen, Congyi. "Heat diffusion coefficient study of polymers based on interpretable machine learning." Theoretical and Natural Science 42, no. 1 (2024): 125–30. http://dx.doi.org/10.54254/2753-8818/42/20240674.

Texte intégral
Résumé :
Abstract. Polymers hold significant application value across various fields of modern society, with different application scenarios requiring specific thermal diffusivity coefficients. Finding polymer materials with targeted thermal diffusivities is crucial. However, due to the vast variety and complex structures of polymers, constructing a unified structured dataset for machine learning modeling is challenging. Although machine learning has shown great potential in materials science, it has rarely been applied to predict the heat diffusion coefficient of polymers. This paper constructs a data
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!